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Introduction: The different ways for selecting single nucleotide polymorphisms have been related to 
paradoxical conclusions about their usefulness in predicting chronic fatigue syndrome even when using 
the same dataset.
Objective: To evaluate the efficacy in predicting this syndrome by using polymorphisms selected by a 
supervised approach that is claimed to be a method that helps identifying their optimal profile.
Materials and methods: We eliminated those polymorphisms that did not meet the Hardy-Weinberg 
equilibrium. Next, the profile of polymorphisms was obtained through the supervised approach and 
three aspects were evaluated: comparison of prediction accuracy with the accuracy of a profile that was 
based on linkage disequilibrium, assessment of the efficacy in determining a higher risk stratum, and 
estimating the algorithm influence on accuracy.
Results: A valid profile (p<0.01) was obtained with a higher accuracy than the one based on linkage 
disequilibrium, 72.8 vs. 62.2% (p<0.01). This profile included two known polymorphisms associated 
with chronic fatigue syndrome, the NR3C1_11159943 major allele and the 5HTT_7911132 minor 
allele. Muscular pain or sinus nasal symptoms in the stratum with the profile predicted V with a higher 
accuracy than those symptoms in the entire dataset, 87.1 vs. 70.4% (p<0.01) and 92.5 vs. 71.8% 
(p<0.01) respectively. The profile led to similar accuracies with different algorithms.
Conclusions: The supervised approach made it possible to discover a reliable profile of polymorphisms 
associated with this syndrome. Using this profile, accuracy for this dataset was the highest reported and 
it increased when the profile was combined with clinical data.
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intelligence, systems biology, linkage disequilibrium

Selección supervisada de polimorfismos de nucleótido único en el síndrome de fatiga crónica

Introducción. Las diferentes formas de seleccionar polimorfismos de nucleótido único se han 
relacionado con conclusiones paradójicas respecto a su utilidad para predecir el síndrome de fatiga 
crónica, incluso utilizando los mismos datos.
Objetivo. Evaluar la eficacia para predecir este síndrome de los polimorfismos seleccionados 
mediante un enfoque supervisado, método que permite ayudar a identificar el perfil óptimo de los 
polimorfismos.
Materiales y métodos. Se eliminaron los polimorfismos que no estaban en equilibrio de Hardy-
Weinberg. Luego obtuvimos el perfil de polimorfismos mediante el enfoque supervisado y evaluamos 
tres aspectos: comparación de la exactitud de predicción con la del perfil obtenido mediante una 
selección basada en el desequilibrio de ligamiento, evaluación de la eficacia para determinar un estrato 
con mayor riesgo y estimación de la influencia del algoritmo de clasificación sobre la exactitud de 
predicción.
Resultados. Se obtuvo un perfil válido (p<0,01) con mayor exactitud que el basado en el desequilibrio 
de ligamiento, 72,8 Vs. 62,2 % (p<0,01), que incluyó el alelo mayor de NR3C1_11159943 y el menor de 
5HTT_7911132, conocidos polimorfismos asociados a este síndrome. El dolor muscular o los síntomas 
de los senos paranasales en el estrato con el perfil, predijeron la presencia del síndrome con mayor 
exactitud que estos síntomas en toda la población, 87,1 % Vs. 70,4 % (p<0,01) y 92,5 % Vs. 71,8 % 
(p<0,01) respectivamente. El perfil llevó a una exactitud similar con diferentes algoritmos.
Conclusiones. El enfoque supervisado permitió descubrir un perfil válido y confiable de polimorfismos 
asociado al síndrome de fatiga crónica. Se encontró la mayor exactitud reportada con estos datos que 
aumentó al combinarse con las variables clínicas.
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Groups of single nucleotide polymorphisms (SNP) 
could be markers for the genetic predisposition 
towards complex diseases given that a significant 
fraction of disease susceptibility may be explained 
by the relatively modest effects of a small number of 
common genetic variants (1). Thus, profiles of SNPs 
could be used as objective markers for diseases that 
are diagnosed by means of subjective symptoms 
such as the chronic fatigue syndrome (2). 

However, to discover clinically relevant profiles, the 
informative SNPs must be selected (3). In the case 
of high-dimensional data, the performance of most 
classification algorithms suffers as the number of 
features becomes excessively large (4). Moreover, 
in a small dataset, there is no single solution if a 
training set contains only a limited subset of all 
possible instances as each distinct training instance 
removes those possible SNP profiles where the 
guesses are wrong. Thus, the selection of SNPs is 
necessary since the number of possible instances 
increases when the number of variables does (5).

The algorithms for SNP selection typically use the 
genetic concept of linkage disequilibrium or, in other 
words, when the presence of one SNP predicts 
the presence of another SNP (6). Then, based on 
measurements of linkage disequilibrium such as r2 
(7), a group of SNPs is selected to represent all the 
SNPs in a given dataset (8, 9). Other test statistic 
approaches such as feature ranking, feature 
subset selection constructive induction, induction 
scan statistics, score statistics, weighted-average 
statistics and the supervised recursive feature 
addition have been proposed for SNP selection in 
genetic association studies (10, 11). The supervised 
approach is claimed by its authors to be a method 
that helps to identify the optimal subset of SNPs 
necessary for discovering the variations associated 
with disease (10).

With regards to the chronic fatigue syndrome, 
different researchers reached contradictory results 
on the usefulness of SNPs for disease prediction 
in spite of the fact that they analyzed the same 
dataset of SNPs. However, there were differences 

in their methodologies. A group of researchers from 
the United States that evaluated all the possible 
combinations of SNPs by using an enumerative 
search concluded that SNP profiles improve 
accuracy in predicting chronic fatigue syndrome 
(12). In contrast, a group from Trento, Italy made 
a selection with a supervised approach based 
on entropy and concluded that the SNPs in this 
dataset were not useful for prediction of the chronic 
fatigue syndrome (Bassetti M, Bernabe M, Borile 
M, Desilvestro C, Fedrizzi T, Giordani A, et al. 
Validation of CFS classification with different data 
sources. Critical Assessment of Microarray Data 
Analysis Conference, June 2006). However, these 
studies had differences in the SNP selection, the 
use of the Hardy-Weinberg equilibrium as a criterion 
for SNP exclusion, and the learning algorithm that 
was chosen for prediction. These differences in 
methodology showed a need for further research to 
evaluate the supervised approach.

As a consequence, the aim of this study was to 
evaluate the efficacy of the supervised approach 
based on entropy in selecting useful SNPs for 
predicting the chronic fatigue syndrome. That is 
the reason we evaluated three different aspects: 
comparison of the prediction accuracy of the 
supervised approach with the one that was based 
on linkage disequilibrium for SNP selection, 
assessment of the efficacy of the SNPs selected 
by the supervised approach in determining a 
population with a higher risk of chronic fatigue 
syndrome, and an estimate of the machine learning 
algorithm influence on the prediction accuracy.

Materials and methods

Database cleansing

From the SNP dataset, provided by the Critical 
Assessment of Microarray Data Analysis 
Conference, June 2006 (CAMDA 2006), available 
at http://www.camda.duke.edu/camda06/datasets/, 
we eliminated 9 of the 44 SNP that were not in the 
Hardy-Weinberg equilibrium. All of the excluded 
SNPs had fewer heterozygous genotypes than 
expected based on allele frequencies, something 
that was highly suggestive of technical error. Next, 
those subjects that did not have SNP data were 
excluded from the analysis thus leaving 43 cases 
of patients with chronic fatigue syndrome and 58 
non-fatigued controls for analysis as previously 
described (12).
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Comparison of SNP selection approaches

Two different approaches were used for selecting 
SNPs. One approach kept the SNPs that best 
represent the other SNPs in each one of the groups 
that were in LD (1). The first step was to determine 
the haplotype frequencies for each pair of SNPs by 
means of the expectation-maximization algorithm 
(8). Next, the r2 measure for each pair of SNPs 
in the same chromosome was calculated and the 
ones which were highly significant (p<0.01) were 
determined. This is supported by the fact that r2 
times N (number of subjects in the study) is equal 
to the chi square value with 1 degree of freedom for 
the case of two loci with two alleles each. Finally, 
those SNPs for which the lowest highly significant r2 
value was higher than the lowest highly significant 
r2 value of the other SNPs were kept. 

The other approach was to select SNPs through 
the supervised approach. This was done with the 
CfsSubsetEval function of the Weka software® 
(13) that chose the group of SNPs with the highest 
correlation to the diagnostic categories, namely, 
fatigued patients with chronic fatigue syndrome 
and non-fatigued controls. At the same time, this 
group also included only those SNPs with the lowest 
possible correlation to each other (14). This function 
used a best first search to determine the combinations 
of SNPs to be evaluated by the CfsSubsetEval 
function. A ten-fold cross validation was used to 
measure the generalization performance of the 
combinations in each of the ten different partitions of 
the dataset (15). The selected SNPs were those that 
were chosen by the CfsSubsetEval function from 
any of the ten partitions.

Next by using the SPSS® software, two predictive 
models, one for each group of SNPs selected by 
the two previously described approaches, were 
generated by logistic regression as described (Lee 
E, Cho S, Park T. Integration of expression data 
and genotype data: application of chronic fatigue 
syndrome data. Critical Assessment of Microarray 
Data Analysis Conference, June 2006). Observations 
with missing values were not taken into account and 
values were assigned to the SNPs according to the 
codominant inheritance as follows (12): two points 
for the homozygous genotype with two minor alleles, 
one point for the heterozygous genotype and zero 
points for the homozygous genotype with two major 
alleles. In the case of sex linked SNPs, two points 
were assigned when the genotype was hemizygous 
for the minor allele and zero points when it was 
hemizygous for the major allele.

The SNP profiles that were kept in each model 
were chosen by forward selection and backward 
elimination based on the accuracy achieved with 
a leave-one-out cross validation (15). To compare 
the two models, the mean accuracies and their 95 
percent confidence intervals were obtained in 30 
different test sets. Each test set had 20% of the 
observations and these had the same percentage 
of both cases and controls that the original dataset 
did. This guaranteed that each class was properly 
represented in the test set which the leave-one-out 
cross validation does not do. The test sets were 
selected after setting a random seed by using the 
Bernoulli formula in the Compute Variable option in 
the Transform menu at SPSS®. Next, the validity 
of the model based on the supervised approach 
was evaluated by means of a permutation test. 
We created 200 shuffled versions of the data by 
randomly relabeling subjects as cases or controls 
and keeping an equal number of subjects in each 
category, as described (12).

Efficacy in determining a population with higher 
risk

The efficacy of the SNP profile from the model 
based on the supervised approach to determine 
a population with a higher risk of chronic fatigue 
syndrome was evaluated by a comparison between 
the prediction accuracy in the general population 
of the dataset and the prediction accuracy in the 
stratum that had the SNP profile associated with 
chronic fatigue syndrome, under nonspecific clinical 
conditions. Briefly, the accuracy values in both 
groups when there is one symptom, for instance sore 
throat was compared. The difference in the values 
of sensitivity, specificity and the positive predictive 
value (PPV) was also assessed (16). All these 
values were procured in 30 randomly generated 
test sets of 20% of the observations. Statistical 
significance of the difference was evaluated by 
T-test and comparison of their 95% confidence 
intervals. The same analysis was done with each 
one of the symptoms that were registered in the 
dataset: tender nodes, diarrhea, exertion fatigue, 
muscle pain, joint pain, fever, chills, unrefreshing 
sleep, sleep problems, headache, memory and 
concentration problems, nausea, abdominal pain, 
shortness of breath, photophobia, depression and 
sinus nasal problems.

Estimate of machine learning algorithm 
influence on prediction accuracy

The reliability of the SNP profile selected by 
the supervised approach was assessed by a 
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comparison of the prediction accuracies obtained 
with different types of machine learning algorithms. 
To do this, all the algorithms included in the Weka® 
software were run after which they were divided into 
one of the five main types of algorithms: Functions, 
Bayesians, Instance Based Learners, Decision 
Trees and Rules. Then, ones that had the highest 
prediction accuracy in each of these groups were 
compared. The accuracies were procured by using a 
ten-fold cross-validation. The statistical significance 
of the comparison was evaluated with the Kruskal-
Wallis test by using the SPSS® software. This non-
parametric test was chosen as we did not assume 
a normal distribution of the data, which would not 
be the case with the analogous one-way analysis 
of variance, ANOVA (17). In this case, we used 
the data in each one of the ten partitions from the 
cross-validation to calculate each one of the mean 
accuracies.

Results

With the approach that was based on linkage 
disequilibrium, we kept 13 SNPs. In general, one 
SNP was selected from each one of the seven 
groups of SNPs that was in linkage disequilibrium. 
Each group corresponded to one of the following 
seven genes: Glucocorticoid receptor (NR3C1), 
corticotropin releasing hormone receptor-2 
(CRHR2), tryptophan hidroxilase (TPH2), serotonin 

receptor 2A (HTR2A), corticotropin releasing 
hormone receptor-1 (CRHR1), serotonin transporter 
(5HTT) and catechol-O-methyltransferase (COMT). 
However, there were two exceptions: the two SNPs 
from the HTR2A gene and the SNPs in the TPH2 
gene. The SNPs from the HTR2A gene were kept 
because there was only one r2 measure. In the 
case of the TPH2 gene, one SNP was not in linkage 
disequilibrium so we kept this single SNP and the 
one that best represented the group of SNPs that 
were in linkage disequilibrium. So, we kept 9 SNPs 
from the 7 groups in linkage disequilibrium and the 
4 SNPs that were not in linkage disequilibrium: two 
from the tyrosine hidroxilase gene (TH) and two 
from genes that had only one SNP in the dataset: 
pro-opiomelanocortin (POMC) and monoamine 
oxidase B (MAOB) genes (Table 1).

With the supervised approach, 14 SNPs were 
kept. In 8 cases, the SNPs were the same as 
those kept with the other approach. However, in 
some cases, this approach was more conservative 
because it held on to more than one SNP from 
some groups in linkage disequilibrium. At the 
same time, it eliminated some SNPs that had a 
low correlation with the diagnosis despite the fact 
that they represented other SNPs. The supervised 
approach also eliminated one of the two SNPs from 
the HTR2A gene that could not be differentiated 

Table 1. Comparison of the SNPs selected by two different approaches

Chromosome	 Linkage disequilibrium approach (LD)	 Supervised approach (SA)	

2	 POMC_3227244	 POMC_3227244	
5	 NR3C1_11159943	 NR3C1_11159943
		  NR3C1_1046360†
		  NR3C1_1046353†	
7	 CRHR2_11823513	 CRHR2_11823513
		  CRHR2_15872871†	
11	 TH_245410	 TH_245410
	 TH_243542	 TH_243542	
12	 TPH2_1843075	 TPH2_1843075
	 TPH2_8376042 ‡
13	 HTR2A_8695278	 HTR2A_8695278
	 HTR2A_3042197*
17	 5HTT_1841702	 5HTT_1841702
		  5HTT_7911132†
	 CRHR1_2544830‡	
		  CRHR1_7450777†	
		  	
22	 COMT_11804654‡	
		  COMT_2539273†	
X	 MAOB_15959461‡	

† SNPs kept with the SA that were discarded based on LD. 
‡ SNPs discarded with the SA but kept based on LD. 
*SNP that could not be discarded based on LD in spite of giving redundant information but discarded by the SA.
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by the approach based on linkage disequilibrium 
(Table 1). 

With regards to the purpose of comparing the 
two selection approaches, the models that were 
built showed different prediction accuracies. The 
model based on the supervised approach had a 
higher accuracy than the model based on linkage 
disequilibrium, 74.4% and 65.6% respectively, 
according to the result of the leave-one-out cross 
validation. Similar mean accuracies were obtained 
in the test sets, 72.8% and 62.2% respectively, 
p=4E-04 (Figure 1).

In detail, the model based on linkage disequilibrium 
showed an association of chronic fatigue 
syndrome with the presence of the major alleles of 
NR3C1_11159943 and TH_243542, and the minor 
allele of TPH_1843075. Only NR3C1_11159943 
made a significant contribution to the model 
(p=0.015). In contrast, the model based on the 
supervised approach showed that the chronic 
fatigue syndrome was associated with the 
presence of the major alleles of NR3C1_11159943, 
CRHR1_7450777, and TH_245410, and minor 
alleles of 5HTT_7911132, TPH2_1843075, and 
HTR2A_8695278. Of the SNPs in the model only 
NR3C1_11159943 and 5HTT_7911132 made 
a significant contribution (p=0.01 and p=0.04 
respectively). The permutation test showed that all 200 shuffled versions had lower accuracy than the 

actual version (Figure 2).

With regards to the efficacy of the SNPs selected 
through the supervised approach to determine a 
population with a higher risk, 37 subjects had the SNP 
profile associated with chronic fatigue syndrome. In 
this stratum, the presence of muscular pain led to a 
higher prediction accuracy than the presence of this 
symptom in the total population of the dataset, 87.1% 
vs. 70.4% respectively, p= 3E-07. In this stratum, 
the presence of sinus nasal symptoms also led to 
a higher prediction accuracy than the presence of 
this symptom in the general population, 92.5% vs. 
71.8% respectively, p=2E-11 (Table 2). 

When there was muscular pain, the probability of 
having chronic fatigue syndrome was also higher 
(88.8%) in the stratum with the SNPs profile 
associated with chronic fatigue syndrome than in 
the general population (59.6%) based on the PPV 
values. However, the presence of muscular pain in 
chronic fatigue syndrome or its absence in controls 
were not higher in the stratum with the SNP profile 
than in the general population as indicated by the 
values of sensitivity and specificity, 95.6% vs. 
96.9%  and 45% vs. 50.8% respectively.
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Figure 1. Comparison of the prediction accuracy between the 
two models based on different approaches for selecting SNPs. 
Supervised approach (SA) and linkage disequilibrium approach 
(LD). 
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Figure 2. Permutation test of the accuracy obtained with the 
supervised approach. It shows a comparison between the 
prediction accuracy in the true dataset (black bar) and in 200 
shuffled versions (clear bars) of data by randomly relabeling 
subjects as chronic fatigue syndrome patients or non-fatigued 
controls.
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Regarding the probability of having chronic 
fatigue syndrome when there were sinus nasal 
symptoms, this was also much higher (98.2%) 
in the stratum with the SNPs profile associated 
with chronic fatigue syndrome than in the general 
population (61.6%) according to the PPV values. 
The presence of sinus nasal symptoms in chronic 
fatigue syndrome was a little higher in the stratum 
with the SNP profile than in the general population 
as indicated by the values of sensitivity, 93.3% vs. 
90.7% respectively. But furthermore, the absence 
of sinus nasal symptoms in controls was much 
higher in the stratum with the SNP profile than in 
the general population as indicated by the values of 
specificity, 92.8% vs.57.8% respectively.

With regards to the influence on the accuracy 
of data mining techniques, the algorithms that 
achieved the highest accuracies among all of the 
algorithms already included in the Weka® software 
were: Decorate-Simple Logistic and Decorate-
Logistic (76% and 74% respectively) in the group 
of Functions, Complement Naive Bayes (72%) in 
the group of Bayesian Learners, One-R Multiboost 
(73%) in the group of Rules, Kstar (68.9%) in the 
group of Instance Based Learners, and ADTree 
(66.6%) in the group of Decision Trees. However, 
in spite of the fact that the Functions tended to get 
higher accuracies, the differences in prediction 
accuracy among these algorithms were not 
significant (Figure 3).

Discussion

The supervised approach based on entropy made it 
possible to find a SNP profile useful for prediction of 
chronic fatigue syndrome in the individuals included 
in the study. This approach, which takes into account 
the correlation with diagnostic categories, selected 
a SNP profile that predicted the chronic fatigue 

Table 2. Comparison of the classification performance between the general population and the stratum with the SNPs associated 
with chronic fatigue syndrome in the presence of muscular pain or sinus nasal symptoms

	 Muscular pain		  Sinus nasal symptoms

	 General	 Stratum 	 General	 Stratum
	 population		  population	
	
True positives	 251	 175	 235	 169	
False positives	 170	 22	 146	 3	
True negatives	 176	 18	 200	 39	
False negatives	 8	 8	 24	 12	
Sensitivity	 96.9	 95.6	 90.7	 93.3	
Specificity	 50.8	 45	 57.8	 92.8	
PPV*	 59.1	 88.8	 61.6	 98.2	
Prediction accuracy	 70.4	 87.1	 71.8	 92.5

*positive predictive value

syndrome with the highest accuracy reported so far. 
It also determined a stratum of the population with 
a higher risk of having this disease in presence of 
nonspecific symptoms. Furthermore, the supervised 
approach enabled us to find a reliable SNP profile 
since similar results were produced while using 
different machine learning algorithms.

The classification accuracy with the supervised 
approach was not only 10 points above the accuracy 
of the approach based on linkage disequilibrium, 
but also higher than the 64.5% based on cross-
validation results reported by another research 
group that also used the same data and an 
approach based on LD (Lim S, Le W, Hu P, Xing 
B, Greenwood CMT, Bayene J. Integration of 
clinical, SNP, and microarray gene expression 
measurements in prediction of Chronic Fatigue 
Syndrome. Critical Assessment of Microarray Data 
Analysis Conference, June 2006). Moreover, the 
accuracy with the supervised approach was not 
significantly different from the highest reported of 
76% (12) that was only achieved in a training set of 
observations. In other words, this accuracy was not 
obtained by the accepted methods for determining 
the prediction such as cross-validation or the 
estimate in an independent test set. 

In addition, the model based on selection by a 
supervised approach demonstrated statistical and 
biological validity. The SNPs in the model predicted 
the dummy classifications with lower accuracies 
than the actual one. Furthermore, the two significant 
SNPs in the model were genetic variants with 
an already established association with chronic 
fatigue syndrome. NR3C1 has been implicated 
as regulator of the hypothalamic-pituitary-adrenal 
axis (18) and of the immune function: the increase 
in its ligand affinity has led to a reduction in T 
cell numbers and to a change in susceptibility to 
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autoimmune diseases (19). A higher frequency of 
the NR3C1_11159943 major allele has also been 
reported in patients with chronic fatigue syndrome 
(20). Moreover, the model associated the syndrome 
with the minor allele of 5HTT_7911132, a SNP that 
belongs to a gene that decreases the level of active 
serotonin when the allelic variants with increased 
transcriptional activity are present (21). Taken 
together, these findings agree with an additive 
effect that leads to a lower level of cortisol (22, 23) 
and to alterations in the neurotransmission and in 
the immune function (24, 25) already described in 
the chronic fatigue syndrome (Figure 4).

With regards to the finding that there is a higher 
probability of the group of people with the SNP 
profile associated with chronic fatigue syndrome 
having the disease when there were muscular pain 
or sinus nasal symptoms, it is remarkable that this 
was discovered through the leave-one-out cross 
validation. This offers the chance to squeeze the 
maximum out of a small dataset and to procure as 
accurate an estimate as possible (15) such as in 
the cases of using molecular markers to predict the 
response cancer patients will have to a treatment 
(26) or of the genes involved in the pluripotency of 
stem cells (27). 

Furthermore, the results of the leave-one-out cross-
validation were confirmed in stratified test sets of 
20% of the observations (five-fold cross validation), 
thus improving the reliability of the prediction 
accuracy (28). These results also suggest that 
muscular pain and the sinus nasal symptoms seem 

Figure 3. Comparison of the prediction accuracy among different machine learning algorithms that use the SNP profile selected with 
the supervised approach. 
LR: logistic regression; DSL: decorate-simple logistic; DL: decorate-logistic; CNB: complement naive Bayes; RRM: one-R multiboost; 
KS: kstar; ADT: ADTree
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to represent other pathways related to chronic 
fatigue syndrome in addition to the described 
alterations in the immune or neuroendocrine system 
that have been related to the SNPs successfully 
selected by the supervised approach. Thus, the 
reported disturbance of excitability and increase 
in oxidative response in the muscle (29, 30), the 
hyperalgesia to pressure at paranasal sinuses, the 
rhinosinusitis complaints (31), and the increased 
prevalence of non-allergic rhinitis in patients with 
CFS (32) agree with our results.

With regards to the data mining techniques, the 
similar accuracies obtained with different learning 
algorithms makes the use of more than one 
algorithm to get strong evidence about the validity 
and reliability of a SNP profile feasible and even 
advisable. The most significant SNP in our study, 
NR3C1_11159943, had also been found to be 
highly relevant for distinguishing cases of chronic 
fatigue syndrome from non-fatigued individuals by a 
Bayesian approach (33). Moreover, the finding that 
the Function type of algorithms tended to get higher 
prediction accuracies seems to be interesting for 
further research. This could be explained by the fact 
that these algorithms allow the use of SNP values 
based on the type of inheritance and that the output 
gives different weights to the SNPs according to 
their contribution to the model. But, what is even 
more interesting is that these algorithms can be 
complemented by meta-algorithms especially 
useful for small samples, such as Decorate, that 
improve the classification task by using several 
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