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Biogeographical factors determining Triatoma
recurva distribution in Chihuahua, México, 2014

Maria Elena Torres', Hugo Luis Rojas’, Luis Carlos Alatorre’, Luis Carlos Bravo',

Mario Ivan Uc', Manuel Octavio Gonzalez', Lara Cecilia Wiebe', Alfredo Granados?

"Unidad Multidisciplinaria, Universidad Autdénoma de Ciudad Juarez, Cuauhtémoc, Chihuahua,
México

2|nstituto de Ingenieria y Tecnoldgica, Departamento de Ingenieria Civil y Ambiental, Juarez,
Chihuahua, México

Introduction: Triatoma recurva is a Trypanosoma cruzi vector whose distribution and
biological development are determined by factors that may influence the transmission of
trypanosomiasis to humans.

Objective: To identify the potential spatial distribution of Triatoma recurve, as well as social
factors determining its presence.

Materials and methods: We used the MaxEnt software to construct ecological niche
models while bioclimatic variables (WorldClim) were derived from the monthly values of
temperature and precipitation to generate biologically significant variables. The resulting
cartography was interpreted as suitable areas for T. recurva presence.

Results: Our results showed that the precipitation during the driest month (Bio 14), the
maximum temperature during the warmest month (Bio 5), and the altitude (Alt) and mean
temperature during the driest quarter (Bio 9) determined T. recurva distribution area at a
higher percentage evidencing its strong relationship with domestic and surrounding structures.
Conclusions. This methodology can be used in other geographical contexts to locate
potential sampling sites where these triatomines occur.

Keywords: Triatoma; Triatominae; ecosystem; Chagas’ disease; disease vectors; climate.

Factores biogeograficos determinantes de la distribuciéon de Triatoma recurva en
Chihuahua, México, 2014

Introduccidén. Triatoma recurva es un vector de Trypanosoma cruzi cuya existencia y
desarrollo bioldgico estan determinados por factores que pueden influir en la transmision
de la tripanosomiasis a los seres humanos.

Objetivo. Determinar una posible distribucién espacial de Triatoma recurva y algunos
factores sociales que determinan su presencia.

Materiales y métodos. El modelado de nicho ecoldgico se hizo con el programa MaxEnt
empleando las variables bioclimaticas (WorldClim) derivadas de los valores mensuales

de temperatura y precipitacion para generar variables bioldgicamente significativas. La
cartografia resultante evidencié areas adecuadas para la presencia de T recurva.
Resultados. Los resultados indicaron que la precipitacion del mes mas seco (Bio 14), la
temperatura maxima del mes mas calido (Bio 5), y la altitud (Alt) y la temperatura media del
trimestre mas seco (Bio 9), determinaron en mayor porcentaje el area de distribucion de T.
recurva, observandose que es una especie con una acentuada relacién con las estructuras
domésticas y circundantes.

Conclusion. Esta metodologia puede emplearse en otros contextos geograficos para
localizar posibles sitios de muestreo de estos triatominos.

Palabras clave: Triatoma; Triatominae; ecosistema; enfermedad de Chagas; vectores de
enfermedades; clima.

Chagas disease or American trypanosomiasis is a parasitic blood and
tissue disease caused by the flagellated protozoan Trypanosoma cruzi located
in tissue, especially myocardial tissue. After a long evolutionary period (1,2), T
cruzi is known to cause irreversible heart disease in 25 % of affected people.
Its transmission cycle constitutes a complex zoonosis that involves several
vertebrate reservoirs and insects among which Triatoma recurva is one of the
chief ones. Trypanosoma cruzi can infect many tissues of mammalian hosts
and spreads in the environment in multiple transmission cycles that may or
may not be connected (3,4).
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These insects belong to the order Hemiptera, infraorder Cimicomorpha,
superfamily Reduvioidae, family Reduviidae, and subfamily Triatominae
comprising more than 140 species grouped into 18 genera and five tribes. The
habitats for their life cycles show considerable variability, and authors have
indicated that some triatomine species can adapt to home environments and
their peripheries where they transmit T. cruzi to humans (5).

Chagas disease is the most important parasitic disease in Latin America
given its morbidity and economic importance. It surpasses all other parasitic
diseases (6) and is the third most infectious disease in Latin America,
second only to AIDS and tuberculosis. In Mexico, this type of zoonosis
is associated with people’s socio-economic level, which determines their
access to resources, hygiene practices, and quality of housing, education,
and sanitation, especially potable water and drainage systems (7,8). Triatoma
recurva represents a risk factor for the population at large (9,10) but access
to information about this type of zoonosis in nonendemic places is insufficient
because the disease is not considered a risk and record-keeping of any
related data is scant. Additionally, the gathering of epidemiological data
regarding the death toll from Chagas disease is challenging (11) due to the
lack of experience in its clinical diagnosis, which also affects decision making
in medical surveillance limited at best.

Factors such as climate, rain, geographical barriers, humidity, topography,
hosts, reservoirs, and causal agents determine T recurva distribution and,
therefore, its ability to transmit T cruzi (12-14). The knowledge about the spatial
location of these factors and the distribution of these Hemiptera can be extremely
useful to detect populations vulnerable to diseases transmitted by these vectors.

Geographic Information Systems have become an epidemiological tool to
monitor vector-transmitted diseases (15-17) and develop proper intervention
strategies. To identify the biophysical variables required by a taxonomic group,
Phillips, et al. developed a maximum entropy algorithm known as MaxEnt, which
combines statistics and Bayesian methodology to estimate the distributions of
the maximum entropy subject to environmental information constraints (18).

The geographical distribution of T. recurva is essential to study its
natural, ecological, genetic, and evolutionary history, as well as to obtain the
information needed to understand the different biogeographical and historical
factors conditioning the different diseases it transmits. Such knowledge
would contribute as well to foresee a potential emergence or reemergence
of diseases transmitted by the vector and to extend the current view of the
distribution of this important group of insects in México. In this context, the
objective of our study was to identify the potential spatial distribution of T.
recurva and the factors determining its presence.

Materials and methods
Study area

Chihuahua is in the central part of northern México (figure 1) bordering in
the north the states of New Mexico and Texas in the United States, Coahuila
de Zaragoza in the east, Durango state in the south, and Sinaloa state in
the west. lts geographical coordinates are 25°30’ and 31°47’ N and 103°18
to 109°07 W. It is México’s largest state stretching across 12% of the nation’s
surface with a total area of 247.45 km?2. Its climate is dry and semidry and the
rainfall annual average is approximately 500 mm (19).
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Origin: Elaboration based on layers of CONABIO (20) and several sources of the presence for Triatoma recurva

Figure 1. Area of study and presence of Triatoma recurva
Database and procedures

To generate the area of T recurva potential distribution, we used 14 records
of occurrence, all of them located in the state of Chihuahua. The points of
presence were taken from the Global Biodiversity Information online website
(1), Licon-Trillo (1), and the Centro Nacional de Programas Preventivos y
Control de Enfermedades (Cenaprece) (12,20-23).

We used a group of biophysical variables: 19 climatological and
five topographical derived from the digital elevation model (hillshade),
accumulation of flux, slope, hillside facings, and altitude (Z) obtained from
WorldClim (table 1). This database contains climate data corresponding to
global climate layers with a homogenized resolution of 1 km obtained by
cross-referencing weather station records (grids of 20 x 20 km, Environmental
Systems Research Institute - ESRI format) from 1950 to 2000 from several
sources at the global, national, regional, and local levels. These layers feature
bioclimate variables derived from the monthly temperature and rainfall values
to generate the most biologically significant variables representing annual
tendencies and limiting factors for the species distribution (20).

We complemented this information with the vegetation tables of contents
from the Normalized Difference Vegetation Index (NDVI) generated by the
NASA MODIS sensor in 2014 (21-23). These tables have a temporary monthly
resolution and a spatial resolution of 1 km?2 (12 monthly NDVI variables by
the 11th of each month) (MODIS. GSFC. NASA. gov/data-dataprod-mod13.
php), as well as the land-use variable generated by the Instituto Nacional
de Estadistica y Geografia (INEGI) for land use and the V 2015 vegetation
series available in the vectorial format at a 1:250,000 scale in the geosite
of the Comision Nacional para el Conocimiento y Uso de la Biodiversidad
(CONABIO) with 37 variables in total (24).
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Adjustment of the spatial resolution

As the information collected was generated using different scales, it
was necessary to standardize the scales based on the characteristics of
the WorldClim variables (1 km given that MaxEnt does not work at different
scales) (columns, rows, and pixel size) using ArcGis 10X with extraction using
the mask module (25).

Selection of variables

The first step was to analyze the spatial correlation of the 37 predictor
variables in the study area. For this, we calculated Spearman’s correlation
between pairs of variables that ruled out correlation values exceeding R=0.75
because 0.5 to 0.7 coefficients tend to be relevant in small samples and
this type of correlation avoids the oversizing of presence areas and should
be used for data series with extreme values because Pearson’s correlation
calculations will affect the results (26,27).

Additionally, we made a bootstrap resampling (1,000 repetitions) where the
independent covariables were expected to be present in the largest number
of bootstrap samples while noise variables were present as predictors in a
lesser number of bootstrap samples (28). If it is carried out automatically, the
advantage of this resampling technique is that it allows the estimation of an
empirical distribution function through the resampling of the observed data
and autocorrelation does not affect the selected model (table 1) (29).

The standard deviation was calculated with a confidentiality interval bias at
95% and a level of significance of a=0.025 using the IBM SPSS Statistics™,
version 20.0, software. This process yielded nine representative variables for
the area of interest. Using the jackknife procedure we eliminated negative
contributions and, thus, three variables were eliminated (Bio2, Somb, and Uso).

Potential distribution

First, it was necessary to debug the database with occurrence records.
Each point records information on its location, i.e., latitude and longitude in
decimal degrees. The preparation of the environmental variables comprised
setting the type of format to ASCII because MaxEnt only recognizes this
format and geospatially adjusting each variable to the study area.

We selected the MaxEnt algorithm because its application in previous
works had yielded good results (30,31) even with scant data (32), as in
this case. Usually, in MaxEnt, the data are divided into two sets, one for the
generation of the model and the other one for validation (33,34). However, as
this procedure loses important information within the data set for validation
(35), it is not suitable with small samples (35) but to solve the problem we
resorted to a replication technique (bootstrapping) and generated 50 models.
In this way, random partitions of data were made in each replication and
each model was valued using a user-defined percent (50% in this case).
In bootstrapping, sampling is performed by replacement indicating that the
records of presence can be used more than one time in the validation dataset
for each replication (36-38).

The biophysics variables were of the continuous type in our case. To
estimate which variables were more relevant to the model, we discarded the
variables that did not contribute to it using a jackknife test and then, the test
was performed again with the newly debugged data (39).
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Table 1. Environmental parameters for species distribution models: WordClim
(1950-2000), NDVI-MODIS 2014, topographic, and land-use variables

Variable Description

BIO1 Annual mean temperature

BIO2 Mean diurnal range**

BIO3 Isothermality

BIO4 Temperature seasonality

BIO5 Maximum temperature of warmest month**

BIO6 Minimum temperature of the coldest month

BIO7 Temperature annual range**

BIO8 Mean temperature of the wettest quarter (3 months)
BIO9 The mean temperature of the driest quarter (3 months)**
BIO10 Mean temperature of the warmest quarter (3 months)
BIO11 Mean temperature of the coldest quarter (3 months)
BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month**

BIO15 Precipitation seasonality

BIO16 Precipitation of wettest quarter (3 months)

BIO17 Precipitation of driest quarter (3 months)

BIO18 Precipitation of warmest quarter (3 months)

BIO19 Precipitation of coldest quarter (3 months)

NDVI1 Normalized difference vegetation index to January, 2014
NDVI2 Normalized difference vegetation index to February, 2014

NDVI3 Normalized difference vegetation index to March, 2014
NDVI4 Normalized difference vegetation index to April, 2014
NDVI5 Normalized difference vegetation index to May, 2014
NDVI6 Normalized difference vegetation index to June, 2014
NDVI7 Normalized difference vegetation index to July, 2014
NDVI8 Normalized difference vegetation index to August, 2014
NDVI9 Normalized difference vegetation index to September, 2014
NDVI10 Normalized difference vegetation index to October, 2014
NDVI11 Normalized difference vegetation index to November, 2014
NDVI12  Normalized difference vegetation index to December, 2014

Alt Altitude Z**

Acu Accumulation of flux**
Pend Slope

Asp Situation of hillsides
Somb Hillshade**

Uso Soil use**

** Variables used for the model were obtained (not related among them) from
Spearman’s correlation (<0.75, p=95%, a=0.025) and bootstrap of 1000 iterations.

The logistic output was chosen to obtain those values that were easier to
understand and were processed later to be used as a probability value with
values fluctuating between 0 and 1 where 0 showed incompatibility or absence
of the species and 1, suitability, or likelihood of the species presence (40).

The evaluation process followed the parameters established by Phillips, et
al. (31), using the characteristic receiver’s operating curve (ROC) to calculate
the area under the curve (AUC), which was obtained by comparing the
proportion of false and true positives, i.e., to show in two axes, X and, the
proportion of false positives (1-specificity) and on the Y-axis the proportion of
true positives (sensitivity) (41). An AUC with a 0.5 value shows that the model
has no predictive power, a value of 1 shows discrimination or a perfect model,
and values below 0.5 show a much lesser relationship than that randomly
expected (42,43).

After generating the 50 models, we selected five maps from MaxEnt,
specifically those with a greater area under the curve to incorporate them
into the ESRI ArcGis, 10.2 version. Through map algebra, we calculated
the average of such selection to obtain a consensus map and define the
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potentially sustainable areas for the species. Then we reclassified the values
based on the threshold established by the MaxEnt: 10 percentile (a 10%
probability that the points of presence lied out of the prediction area of the
whole potential distribution area) (44). Probabilities under the threshold were
transformed into 0 and interpreted as the absence of hemipteran while those
over the threshold were converted to 1 showing the presence of the species.

Results

The models, based on random subsets, were highly predictive of the
distribution of T recurva. The AUC results and highest percentages of the
contribution of the two-variable model by replication showed sustained
importance of the following variables (table 2): precipitation during the driest
month, the maximum temperature of the warmest month, altitude (Alt), and
mean temperature of the driest quarter, all indicating that the model ability to
classify the presence was good and that it can be considered acceptable and
more precise than that of a randomly obtained model.

The resulting cartography was obtained through the replicas (6, 16, 17, 26,
and 40) with an AUC more significant than 0.8 (figure 2). Table 2 shows the
percentage contribution of the variables used to build the potential distribution
model for T recurve, the mean temperature of the driest quarter (Bio 9) being
the most critical variable for its distribution (100% contribution), followed by
the highest temperature of the warmest month (Bio 5), the precipitation of the
driest month (Bio 14) (99.4%) and the altitude (Alt) (0.6%).

However, the jackknife test indicated the variables bringing more
information to the model when isolated: Bio 5 (maximum temperature of the
warmest month), altitude (Alt), precipitation of the driest month (Bio 14), mean
temperature of the driest quarter (Bio 9), and annual temperature range (Bio
7) (figure 3).

The resulting cartography can be interpreted as moderate to highly suitable
areas in the municipalities of Buenaventura, Galeana, Ahumada Casas
Grandes, Praxedis G. Guerrero, Batopilas, Urique, Morelos, Guachochi,
Ascension, Ojinaga, Coyame del Sotol, Aldama, Manuel Benavides, Julimes,
Delicias, Rosales, Saucillo, Meoqui, La Cruz, Allende Hidalgo del Parral,
Matamoros, and Coronado.

Table 2. Area under the curve and highest percentage contribution of
variables by reply

Number AUC Variable of importance Perce_ntage
of models contribution
17 0.8526 Precipitation of driest month 721
Max temperature of warmest month 279
16 0.8449 Max temperature of warmest month 89.6
Precipitation of driest month 10.4
26 0.8243 Max temperature of warmest month 58.5
Precipitation of driest month 415
40 0.8145 Precipitation of driest month 99.4
Altitude 0.6
6 0.8136 Mean temperature of driest quarter 100

AUC: area under the curve
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Figure 2. Distribution of Triatoma recurva. Consensus map (A): Result of the addition of the

five models with AUC<0.8. Source: Individual elaboration based on the results obtained by the
modeling in MaxEnt and algebra of maps. Map of presence/absence (B) for the Triatoma recurva
generated by the reclassification and algebra of maps. Source: Individual elaboration based on
the results of MaxEnt, the reclassification by the percentile 10, and algebra of maps. The dotted
line shows favorable environmental conditions for the presence of Triatoma recurve in Chihuahua
state (potential distribution). There are also two occurrences not classified by Maxent.
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Figure 3. Jackknife test of the area under the curve (AUC) for Triatoma recurva. Profit generated
by each variable in three different scenarios: (a) running the model with only one variable (blue);
(b) with all the variables except one (green), and (c) with all the variables (red). This reflects how
much useful information each variable contains.

Discussion

The biogeographical approximation we adopted in the present study was
based on the potential distribution of T recurva, which is the only component
involved in the vectorial transmission dynamics of Chagas disease, a
zoonosis that must be understood as an extremely complex natural system.

The values of the area under the curve (greater than 0.8) in the T recurva
models were above the random prediction parameter (AUC=0.50) indicating
that the model’s ability to classify the presence of the species is acceptable
and more precise than a randomly obtained model.
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Additionally, this result is consistent with reports from other authors (45-
49). MaxEnt was proven to be a useful tool for modeling using only the data of
presence, making predictions with low numbers of presence, and improving
the performance of numerous traditional techniques.

Regarding the AUC jackknife test, we noticed that Bio 5 (highest
temperature of the warmest month) is the highest-contributing variable to the
isolated model form, followed by the mean temperature of the driest quarter
(Bio 9), the altitude (Alt), the precipitation of the driest month (Bio 14), and
the annual temperature range (Bio 7). These five variables bear a relationship
to each other and explain why several authors consider them as constraining
factors for this species (50-54).

The cartography resulting from the MaxEnt model can be interpreted as
the potential areas in the above-mentioned municipalities and they explain
why T recurva has a higher probability of existing in those places due to their
environmental conditions. However, triatomine bugs could be present in all
the northern cone of Chihuahua (figure 2A) (55,56). The map of the absence
or presence defines the potential distribution of T recurva (figure 2B) but its
biological and geographical information is limited because this species is
rarely collected and its breeding in the laboratory is challenging (57).

Two omissions (figure 2B) can be attributed to the generated model, which
will not be accurate given that the occurrences were non-representative, to a
misidentification of species, georeferencing, or to the fact that the presence
of the species include individuals outside their native distribution (58).
However, some authors have indicated that in some models small areas
contain the corresponding species showing that they are not absent but that
their distribution has lost continuity in these areas and generated isolated
populations due to the historical or recent fragmentation of their habitat.

The data previously mentioned show T. recurva’s capacity of adjustment to
different environments. In the present study, we identified possible patterns of the
distribution of medically important Hemiptera. Among the 37 variable predictors
used in the modeling, four predicted the potential distribution of T recurva
(mean temperature of the driest quarter, Bio 9; the maximum temperature of the
warmest month, Bio 5; precipitation of the driest month, Bio 14, and altitude, Alt)
(45,50-53). The cartography of the potential spatial distribution of T recurva was
generated through modeling using maximum entropy.

Given the resurgence of diseases transmitted by Hemiptera, these results
can be helpful to generate a hypothesis and identify critical locations where
diseases caused by this vector spread and are transmitted. The AUC values
reached indicated that the model predicts the distribution of triatomine bugs
in Chihuahua, México, with a very acceptable degree of precision, higher than
those obtained randomly, thus confirming our findings and the validity of the
model obtained.

More attention should be given to the variables that intervene importantly
in the generation of this model because they indicate the presence of
Hemiptera and allow for the development of control and sanitation strategies
to avoid epidemics in the country. The knowledge on the biogeographical
process of vectors such as Hemiptera is essential for the development,
planning, and optimization of preventive actions and vector control. The
modeling of the potential occurrence of T recurva is an approach to identify
the vulnerable zones in the country and they should be considered valid tools.
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More in-depth studies are required to develop government programs for the
control of vector-borne diseases.

The present study contributes basic information to feed the nation’s
epidemiological surveillance system focusing on those states where the
suitability map has the highest values or where sub-records indicate
the presence of these vectors. This methodology can be used in other
geographical contexts to locate potential sampling sites where these
triatomines occur.
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