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Introduction. Cine-MRI sequences are a key diagnostic tool for observing 

anatomical information, allowing experts to localize and determine suspicious 

pathologies. Nonetheless, such analysis remains subjective and prone to diagnosis 

errors. 

Objective. To develop a binary and multi-class classification considering various 

cardiac conditions through a spatio-temporal model that highlights kinematic 

movements to characterize each disease. 

Materials and methods. This research focuses on using a 3D convolutional 

representation to characterize cardiac kinematic patterns, during the cardiac cycle, 

which may be associated with pathologies. The kinematic maps are obtained from 

the apparent velocity maps computed from a dense optical flow strategy. Then, a 

3D convolutional scheme learns to differentiate pathologies from kinematic maps. 

Results. The proposed strategy was validated with respect to the capability to 

discriminate among myocardial infarction, dilated cardiomyopathy, hypertrophic 

cardiomyopathy, abnormal right ventricle, and normal cardiac sequences. The 

proposed method achieves 78.00% average accuracy and 75.55% average F1-

score, respectively. Likewise, the approach achieved 92.31% of accuracy for 

binary classification between pathologies and control cases. 

Conclusion. The proposed method is able to support the identification of kinematic 

abnormal patterns, associated with a pathological condition. The resultant 

descriptor, learned from the 3D convolutional net, preserves detailed spatio-

temporal correlations and could emerge as possible digital biomarkers of cardiac 

diseases. 

Keywords: heart diseases; diagnostic imaging; magnetic resonance spectroscopy. 
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Introducción. Las secuencias de cine-RM son una herramienta diagnóstica clave 

para observar la información anatómica, lo que permite a los expertos localizar y 

determinar aquellas patologías que resulten sospechosas. No obstante, este 

análisis sigue siendo subjetivo y propenso a errores de diagnóstico. 

Objetivo. Desarrollar una clasificación binaria y multi-clase considerando 

diferentes condiciones cardiacas a través de un modelo espacio-temporal que 

permite resaltar los movimientos cinemáticos logrando caracterizar cada 

enfermedad. 

Materiales y métodos. Este estudio se centra en el uso de una representación 

convolucional 3D para caracterizar los patrones cinemáticos durante el ciclo 

cardiaco, que pueden estar asociados a patologías. Para ello, se obtienen mapas 

cinemáticos a partir de los mapas de velocidad aparente calculados mediante una 

estrategia de flujo óptico denso. A continuación, un esquema convolucional 3D 

aprende a diferenciar patologías a partir de mapas cinemáticos. 

Resultados. La estrategia propuesta se validó con respecto a la capacidad de 

discriminar entre pacientes con infarto de miocardio, miocardiopatía dilatada, 

miocardiopatía hipertrófica, ventrículo derecho anormal y pacientes normales. El 

método propuesto alcanza una precisión media del 78,00% y una puntuación F1 

score del 75,55%, respectivamente. Asimismo, el enfoque alcanzó un 92,31% de 

precisión para la clasificación binaria entre patologías y casos de control. 

Conclusiones. El método propuesto es capaz de apoyar la identificación de 

patrones cinemáticos anormales, asociados a una condición patológica. El 

descriptor resultante, aprendido de la red convolucional 3D, conserva 
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correlaciones espacio-temporales detalladas y podría surgir como posible 

biomarcador digital de enfermedades cardiacas. 

Palabras clave: cardiopatías; diagnóstico por imagen; espectroscopía de 

resonancia magnética. 
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Associated cardiac pathologies represent the main cause of death worldwide, 

representing around 30% of the total deaths (1). The movement and kinematic 

components of cardiac structures represent a key biomarker of heart disorders. 

Magnetic resonance imaging (MRI) has become the primary clinical diagnostic 

technique for quantifying, inspecting, and analyzing the heart. For instance, from 

MRI modality, the ejection fraction can be calculated to discriminate among several 

cardiac conditions. However, the estimation of such measurements is based on 

manual delineation, which can be subject to errors. In addition, cardiac 

measurements may be insufficient to characterize and differentiate the diverse 

cardiac behaviors which are often complex among different cardiac diseases. 

Computational methods have allowed modeling and quantifying the motion and 

shape of cardiac features, supporting tasks related to segmentation (2-5), motion 

analysis, and classification of cardiovascular diseases. Regarding segmentation, 

the approaches have used atlas templates (2,6), encoder-decoder architectures (7-

9), and even deep representations dedicated to localizing regions (3).  

Likewise, Qin et al. (10) uses a Motion-Seg Net to simultaneously obtain motion 

and shape estimations, under an unsupervised scheme. Additionally, semi-

supervised learning was introduced to propagate cardiac disease labels, using as a 

backbone a U-Net that codifies the shape and motion features (11). Additionally, 

Punithakumar et. al. (12) calculates diverse statistics related to velocities and 

ventricle distances to classify pathologies, such as infarcts, dilated heart disease, 

and other cardiovascular diseases. Also, Zhen et. al. (13) performed an 

unsupervised cardiac image representation, learned from a multi-scale deep 

network, that achieved a direct volume estimation. 
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The present work introduces a deep volumetric representation which fully 

characterizes cardiac motion patterns, allowing to obtain motion embedding 

descriptors that classify diverse cardiac diseases. From deep cardiac 

representation, the high-level net embedding vectors are obtained as hidden 

kinematic cardiac descriptors used to classify and discriminate among several 

cardiac pathologies. In the next sections will be fully described the methodological 

approximations, as well as, the validation over a public dataset. 

Materials and methods 

This work introduces a 3D convolutional representation to encode cardiac 

kinematic maps as embedding descriptors with the capability to classify a set of 

cardiac conditions. From velocity fields, cardiac kinematic maps are calculated to 

locally represent patterns such as normal acceleration, tangential acceleration, 

divergence, and vorticity. These enriched and dense motion primitives are 

convolved several times to obtain a hierarchical deep representation of (2D+t) 

spatio-temporal patterns through the cardiac cycle along the short axis. The main 

hypothesis that underlies this work is the capability of spatio-temporal motion 

patterns to represent particular cardiac conditions. In consequence, the 

architecture is able to receive (2𝐷 +  𝑡) feature maps of the whole cardiac cycle 

generating a hidden deep and latent representation that discriminates among 

different cardiac diseases. The general pipeline of the proposed approach is shown 

in figure 1.  

Kinematic cardiovascular maps 

To characterize the motion patterns in the cardiac cycle, it is necessary to build a 

set of kinematic maps that recover motion features from a dense optical flow 
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strategy. The displacement vector field, computed among consecutive frames, is 

related to the apparent velocity of the cardiac cycle. Here, it was selected as an 

approximation of the optical flow that recovers large displacements, as well as, a 

deformation representation that lies in a constraint across nearby regions. For each 

couple of consecutive frames 𝐼(𝑥)𝑡 , 𝐼(𝑥)𝑡+1 a dense motion field was computed 

𝜗 ≔ (𝑢, 𝑣)𝑇. From this motion field, we computed 𝑥 = (𝑥, 𝑦)𝑇 a respective 

displacement vector (𝑢, 𝑣) for each pixel. Hence the dense motion field is obtained 

as a typical minimization of appearance (‖𝐼𝑡 − 𝐼𝑡+1‖2) and gradient (‖𝛻𝐼𝑡 −

 𝛻𝐼𝑡+1‖2) with a function that matches non-local points (SIFT points) where the flow 

region is coherent (14). The kinematic maps are then derived from this optical flow 

field and are represented as 𝐾 = [𝑘1, 𝑘2, … 𝑘𝑖]. In this case, 𝐾 represents a motion 

feature map, while 𝑖 is the index of each calculated kinematic (velocities, 

accelerations, divergences, or vorticities). It is important to note that these feature 

maps can be used as isolated observations or even integrated to enrich cardiac 

disease representation from motion patterns. 

Initially, we consider two acceleration types, where the first one is the normal 

acceleration (NA), which represents the direction change of the velocity taking as 

reference the local center of rotation of the point analyzed (𝑎𝑁(𝑡) =
‖𝑣(𝑡)‖

‖𝜗𝑇
′ (𝑡)‖

). Also, 

the tangential acceleration (TA) was introduced to approximate heart deformation 

during the cardiac cycle, as: (𝑎𝑇(𝑡) =  
𝑢

𝑑𝑡
‖𝑣(𝑡)‖). In addition,the divergence (DIV) 

was calculated, which measures the motion density of the input compared to the 

output. The divergence is mathematically formulated as: (𝑑𝑖𝑣(𝑡) =  
𝜕𝑢(𝑡)

𝜕𝑥
+ 

𝜕𝑣(𝑡)

𝜕𝑦
). 

Also, the vorticity (VOR) was included in this study, which measures the cardiac 
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rotational motion during contraction (ED) and relaxation phases (ES) defined as: 

(𝑣𝑜𝑟(𝑡) =  
𝜕𝑣(𝑡)

𝜕𝑥
−  

𝜕𝑢(𝑡)

𝜕𝑦
). 

A deep 3D convolution architecture 

A key issue in cardiac conditions analysis is the modeling and quantification of 

spatial and temporal patterns, which allows to stand out correlations between 

sequence observations and specific pathologies. In this work, a robust 3D 

convolutional representation is implemented, which captures spatio-temporal 

patterns at different processing levels, through a hierarchical convolutional 

configuration (15). Hypothetically, we assume that a cine-MRI observation can be 

fully expressed by spatio-temporal patterns. These patterns are learned into a 

deep representation, which in turn is adjusted through a conditional discrimination 

rule. Interestingly enough, the proposed architecture is able to receive kinematic 

maps, allowing us to code more complex relationships related to cardiac 

conditions. 

A sequence of images 𝛷 of dimension (𝐿 𝑥 𝐻 𝑥 𝑊) represents either a cine-MRI 

sequence, the corresponding kinematics representation (velocities, accelerations, 

vorticity or divergence) or even a concatenation of multiple kinematics. In this case, 

𝐿 denotes the temporal frame number belonging to the cardiac cycle, and (𝐻, 𝑊) 

the spatial frame dimensions. This sequence is then used as input in the 

convolutional representation and operated at different 3D convolutional layers. In 

such case, 𝜅 represents the (𝑧, 𝑣, 𝑤)-dimensional convolution kernel, where the 𝑧 

dimension convolves over the temporal axis and the (𝑣, 𝑤) dimensions over the 

spatial axes. At each processing step, we calculated a representation volume 𝐷′ 
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which represents a bank of spatio-temporal feature maps, capturing a more 

accurate characterization of motion throughout the cycle (figure 2). 

The total feature volume represents the union of each map 𝑏 for the specified 

number 𝐷′ of kernels. The respective generalization at different layers allows 

obtaining a multi-scale motion representation providing a signature for each 

cardiovascular disease. 

A cardiac embedding representation 

The proposed convolutional representation has the capability to predict cardiac 

conditions under an end-to-end scheme, fixing in the last layer a probability 

prediction output, according to training cardiac classes. Besides, the final layers of 

the architecture model are a set of hidden and complex relationships of kinematic 

inputs, representing a descriptor of a particular disease. In this work, we explore 

the embedding space that results from these descriptors and measures the 

capability to discriminate among pathologies. Specifically, these embedded vectors 

were extracted from the last dense connected layer. For a particular dataset, the 

inputs are then mapped to a trained net and the compact vectors 𝑋𝑖 are recovered, 

with the label corresponding to the disease 𝑦𝑖. The set of training samples was 

used in order to create a random forest, defined as: (𝑋, 𝛩𝑗), where 𝛩𝑗 represents 

each decision tree of independent and identically distributed random variables 

being formed by a uniform random selection of characteristics. In fact, a particular 

threshold (𝜏𝑖) is learned for each kinematic (𝐾), which create a node in the tree 

𝜚(𝐾, 𝜏𝑖) and build a new partition in the feature space. The group of trees gives an 

independent vote for predicting pathology, allowing drawing a discrete partition 
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over topological space to define the boundaries of cardiac classes and obtain an 

automatic classification. 

Experimental setup 

This section details the data and methods of the proposed approach to validate our 

method and its performance according to the classification task. The next 

subsection describes each of the components in the experimental setup. 

ACDC database: This work was trained and validated with a public dataset named 

“Automated Cardiac Diagnosis Challenge” (ACDC) (16). The dataset consists of a 

set of cine-MRI images from patients diagnosed with cardiovascular diseases and 

a control population. Four pathologies are characterized by ejection fraction (EF) 

and other morphological features.  The myocardial infarction (MINF) is defined by 

multiple myocardial segments with an abnormal contraction and a left ventricular 

EF of less than 40%. The dilated cardiomyopathy (DCM) is characterized as 

having a left ventricular EF of less than 40% and a diastolic left ventricular volume 

greater than 100 mL/m2. Several myocardial segments with a thickness greater 

than 15 mm in diastole, a left ventricular cardiac mass greater than 110 g/m2, and 

a normal EF constitute an indicator of hypertrophic cardiomyopathy (HCM). On the 

other hand, when a patient has a right ventricular cavity volume greater than 110 

mL/m2 and a right ventricle EF lower than 40%, it indicates an abnormal right 

ventricle (RV) cardiac condition. Also, the dataset includes patients labeled with 

normal cardiac condition (NOR). 

For whole image sequences recorded in the dataset, the heart position is mainly on 

the basal and the mid-cavity. Each patient has a mean of 9 slices (from apical to 

basal), varying from [13-56] temporal frames across the cardiac cycle. The study 
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includes 100 patients diagnosed with one of the described pathologies (20 patients 

for each cardiac condition). From such volumes of the dataset, it was considered a 

total of 1300 slices. From a data analysis study, the cardiac cycle for each volume 

was fixed in 13 temporal frames. Volumes with larger cardiac cycles were sub-

sampled, ensuring to cover the end diastole and end systole. 

Implementation details: The configuration of the proposed 3D convolutional 

architecture is summarized in table 1. All these convolutions have the same size 

(2𝑥2𝑥2), except to the first one (1𝑥2𝑥2). For the introduced method, two different 

strategies of classification were configured, described as follows: 

● End-to-end-training: In this configuration, the 3D convolutional approach 

was fixed with a softmax layer to carry out the classification of cardiac 

pathologies. In this case, the net was trained with a batch of one, a learning 

rate of 0.001, and an Adam optimization. In this case, the proposed net was 

also adjusted with a dropout of 0.4, and batch normalization to prevent over-

fitting and regularize the loss. We use 20 epochs at each run and follow a 

binary classification rule. 

● Random forest classifier: In this strategy, we used the activations from 

embedding layer of learned net. We expect that such embedding encodes 

learning kinematic features, and allows discrimination among cardiac 

conditions. Particularly, we take the embedding descriptor from the layer 

𝐷𝑒𝑛𝑠𝑒1 , which in turn serves as input to a random forest. In such cases, all 

the kinematics were trained independently, for each discrimination rule, 

between two cardiac conditions. Hence, each image was mapped to each 

architecture, obtaining the respective embedding vector, which corresponds 
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to the last layer. The corresponding embeddings are concatenated, 

representing the new cardiac descriptor of each input sample. A fine-tuning 

was performed with the parameters: 1) A maximum tree of 100 and a 

maximum depth of 60. 2) Each tree is encoded in a binary classification for 

experiments to discriminate between pair of classes, and 3) each tree 

encodes a multi-class classification between normal cardiac sequences vs. 

any cardiac pathology. 

Statistical validation 

Statistical validation: the proposed strategy was validated according to a “leave-

one-patient-out” scheme. This scheme was adopted from the classical leave-one-

out cross-validation. Particularly, in this scheme validation, one patient (with 13 

slices) is left out for testing purposes. In contrast, the rest of the patients (in our 

particular experiment, 39 patients accounting for 507 slices for each binary 

classification) are used for training until all patients are validated. For end-to-end 

experiments, at each fold is trained a convolutional net, which after that is validated 

with samples of a particular patient. The average of results corresponds to reported 

performance on classification. 

When the validation scheme is finished, a prediction for each patient is retrieved, 

helping to then account for each metric classification such as accuracy, precision, 

sensitivity, or F1-Score. It is important to note that at each iteration there was no 

overlap between patients, indeed we used only one cardiac cycle per patient. The 

input samples have a dimension of (12, 128, 128, 1). For multiple kinematics 

experiments, the multidimensional input was set as (12, 128, 128, 3). Each 

dimension corresponds to the cardiac cycle, height, width, and the concatenation 
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between kinematics. The best multi-kinematic representation was considered to 

obtain descriptor vectors to carry out experiments from embedding representation. 

Results 

Classification from an end-to-end scheme 

Figure 3 illustrates corresponding heart kinematic activations from two different 

layers of the proposed architecture. As expected, these maps enhance spatial 

relationships that eventually may correspond to patterns associated with a specific 

disease. The illustrated sample corresponds to cine-MRI labeled as a MINF 

condition. As input, there were included independently the optical flow channels 

and the divergence. Also, the normal acceleration, divergence, and vorticity 

combination were mapped to the trained architecture to obtain deep hierarchical 

activations. For each illustrated input, these activations achieve consistent 

localization that stands out in particular kinematic behaviors at ventricles during a 

cardiac cycle. These activations hierarchically code cardiac descriptors that allow 

supporting an automatic classification but also, they can be implemented as 

observational maps to further analysis during diagnosis and clinical routine. For 

three input configurations, the activations of the first layer stand out local cardiac 

patterns while the (𝐿 − 1) layer focus on the coarse characterization of heart 

regions.  These maps involve temporal correlations allowing an enriched 

description of the heart during the cardiac cycle. 

Table 2 summarizes the classification performance of the proposed approach 

using independent kinematic cine-MRI features. The accuracy and the F1-score 

were the metrics selected to globally analyze the performance of the proposed 

descriptor.  As observed, each independent kinematic has the capability to 
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discriminate between two cardiac conditions, being potential descriptors to support 

disease diagnosis. On average, the velocity field patterns (accuracy of 75.83% and 

F1-score of 71.50%) and the divergence (accuracy of 75.23% and F1-score of 

72.34%) achieve better discrimination for whole experiments. These findings may 

be associated with principal components of heart dynamics, such as the rotation 

movements to describe the left ventricle and particular spatial velocity patterns, 

along the cardiac cycle. Interestingly enough, each kinematic excels in 

discrimination between a couple of conditions. For instance, the vorticity has 

remarkable results to classify between MINF vs DCM, while the TA and NA 

kinematics have a notable performance to separate DCM from control samples. 

In a subsequent experiment, the most promising kinematic features were combined 

as an input block. Table 3 summarizes the results of different kinematic 

configurations. Considering the correlated nature of such kinematics (differential 

relationships from optical flow field), there is not a significant enhancement in 

global accuracy. Nonetheless, there exist some remarkable configurations, such as 

the DCM vs NOR that achieve an average accuracy of 92.50% and an F1-score of 

92.68%, using the coupled configuration of the kinematics: TA, DIV, VOR. 

Classification of embeddings from Random Forest  

An additional multi-modal kinematic configuration was considered to better exploit 

the deep representation of each motion feature map. In this experiment, the new 

cardiac descriptor was evaluated with a random forest classifier. Table 4 shows an 

experiment using the late fusion of embedding vectors taken from deep 

representations of the next kinematics: normal acceleration, divergence, and 

vorticity. Following this configuration, the best accuracy result achieves an average 
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of 78.00% and an F1-score of 77.55%. Also, we should highlight that some 

experiments achieved a perfect classification score, showing the discrimination 

capability of the three deep kinematic representations. 

The proposed representation can be also implemented as a triage alternative to 

classify between cine-MRI with any condition or control sequences. To validate 

such an alternative, the proposed approach was validated in an experiment that 

merged together all labels that correspond to the abnormal cardiac conditions in 

the same class (MINF, DCM, HCM, and RV). In such case, we obtain a binary 

classification from abnormal conditions vs control sequences, as seen in Table 5. 

The group embedding vectors that correspond to TA, DIV, and VOR kinematics 

were employed to carry out a late fusion classification. In this experiment, the 

proposed approach achieved a remarkable 92.31% and 91.19% of accuracy and 

F1-score, respectively. 

Discussion 

The proposed approach introduced a novel 3D convolutional net to quantify and 

characterize diverse spatio-temporal motion patterns on the complete cardiac 

functional cycle. This strategy is able to recover kinematic maps and obtain a 

hierarchical deep multi-level representation, built from a discrimination rule 

between cardiac conditions. Furthermore, we validated the classification and 

characterization capabilities of the 3D network operated on this cardiac kinematics. 

Complementary, we tested compact embedding outputs, which were thereafter 

used to train and validate a random forest classifier, achieving remarkable results. 

In fact, the estimation of the deep kinematic representation improved accuracy by 

over 6% and F1-Score by 10.88% for each kinematic with respect to the original 
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cine-MRI sequences. From this proposed kinematic setup, it is possible to combine 

and enrich motion representation by convolving multiple kinematics, at the same 

time, for a particular 3D net. This enriched representation (from normal 

acceleration, divergence, and vorticity) proves a better performance to discriminate 

among multiple cardiac conditions. 

A remark in this approach is the capability to build compact embedding descriptors 

that code cardiac conditions and form a topological space, from which, it is 

possible to access an automatic classification. These resultant embedding 

correspondences may emerge as potential digital biomarkers of cardiac conditions, 

storing complex correlations, achieved from a learning optimization. This approach 

is promising to implement in a clinical routine to support triage protocols because 

of the exhibited performances of around 92.31% to discriminate between control 

and any cardiac condition, included in this study. Although CMRI is not currently 

the primary diagnostic study for most cardiac conditions, its growing advantages 

are becoming increasingly evident, leading to its adoption as a triage scheme for 

detecting specific cardiac conditions (17). In fact, current reports also evidence an 

effort to introduce such artificial intelligence tools in clinical protocols (18). 

Aditionally, the kinematic maps and resultant activations at different layers of 

hierarchical representation may be important during observational analysis.  

In the state of the art, much of the methodologies are dedicated to perform 

ventricle segmentation tasks. From such resultant volumes are computed classical 

indexes, such as the ejection fraction, and the ventricle volume, among others 

(4,5,8,9). These indexes are computed from relative differences between end-of-

diastole and end-of-systole. For instance, Puyol et. al. proposed a multi-modal 
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atlas that integrates MRI and ultrasound (US) to extract Laplacian motion 

descriptors, allowing the classification of patients with dilated cardiomyopathy from 

control subjects (6). Also, Yang et. Al proposed a registration strategy to quantify 

displacement of LV among temporal consecutive images, but bypassing RV 

analysis that might be remarkable for some diseases (7). Also, Clough et al. 

recovered variational embeddings to discriminate among cardiac diseases (17). 

Despite the remarkable contributions of these approaches, they remain dependent 

on proper ventricle segmentation to characterize cardiac pathologies. A main issue 

of these schemes is the dependency on guided segmentation and the loss of 

temporal patterns that may be crucial to enrich diagnosis. Likewise, these 

descriptors are based on known physical features, poorly exploiting potential 

hidden relationships that may be computed from the (2𝐷 + 𝑡) information, available 

in complete cine-MRI sequences. In contrast, the proposed approach exploits 

motion relationships that may be computed from kinematic representation maps 

but also learned through a 3D representation. This strategy recovers complex 

motion patterns and may be useful to complement typical indices to support expert 

characterizations of particular cardiac conditions. In this line, some approaches 

have also captured motion patterns from left ventricles but again depending on a 

proper geometry recovery (7,10). 

These experiments evidence a potential use of this strategy as triage support of 

patients in clinical schemes. Regarding the state-of-the-art, the proposed approach 

evidence competitive results regarding accuracy and precision by using several 

kinematic characteristics, following a cross-validation leave-one-patient-out. This 

fact shows the robustness of the embedding representation, which allows a reliable 
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classification of cardiac conditions. Besides, this approach operates without any 

segmentation requirement, which results interesting to achieve a more generalized 

heart representation from cine-MRI sequences. Also, the proposed approach was 

validated over an open database with real cine-MRI sequences over five different 

cardiac conditions. Nonetheless, the capability of the proposed approach should be 

validated over larger cohorts of data, from different clinical centers. In such a 

sense, it is expected to report the generalization capacity and the impact of each of 

the kinematic maps, regarding the discrimination capability among cardiac 

conditions. Also, a major exploration of middle and end embeddings should be 

carried out, exploring alternative descriptors of heart observations. For instance, a 

topological analysis or a geometrical search over embedding space may be an 

alternative to validate the discrimination capability. The proposed approach also 

requires additional processing schemes to include multi-classification from an end-

to-end scheme. Future works include the study of other types of kinematics that 

can help to extract relevant patterns, such as attention feature maps.  Finally, 

validation with a larger dataset that includes expert cardiologist annotations and 

clinical information will be considered to define a possible correlation with medical 

findings and the advantages and limitations of the approach. 

This work proposed a deep volumetric convolutional net to classify cardiac 

pathologies from MRI sequences. The proposed approach computes kinematic 

maps, which allow deep representation to encode complex and hidden kinematics 

related to the observed pathologies. In fact, two classification schemes were used 

to validate the proposed approach: 1) from an end-to-end scheme, and 2) using 

embedding descriptors which further are mapped to a random forest classifier. The 
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proposed approaches evidence coherent competitive results over an open-access 

dataset. Future works include the study of geometrical embedding space and the 

validation with larger data cohorts that allow to establish the statistical scope to 

discriminate among close cardiac pathologies. 
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A) Original cine-MRI sequence as input of the network 

 

B) Normal acceleration cine-MRI sequence as input of the network. 

Figure 1. Pipeline of the proposed representation to classify heart conditions from 

cine-MRI temporal sequences (bottom-up scheme) or using kinematic maps as 

input on deep representation.  
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Figure 2. 3D convolution representation. An input image of size 𝐿 𝑥 𝐻 𝑥 𝑊 

performing a convolution with a kernel 𝑡 ∗  𝑦 ∗  𝑥 
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Figure 3. Feature map representation in the convolutional layers obtained from 

both the first and penultimate layers. These primitives are: the optical flow, 

divergence, and a concatenation between normal acceleration, divergence, and 

vorticity. The illustrated sample corresponds to cine-MRI labeled as a myocardial 

infarction. 
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Table 1. Parameters of the 3D deep convolutional architecture 

Layers Output shape Parameters Activation 

𝐼𝑛𝑝𝑢𝑡 
(12,128,128,1) - ReLU 

𝐶𝑜𝑛𝑣3𝐷 
(12, 128, 128, 64) 5842 ReLU 

𝐶𝑜𝑛𝑣3𝐷1 
(6, 64, 64, 128) 221312 ReLU 

𝐶𝑜𝑛𝑣3𝐷2 
(3, 32, 32, 256) 884992 ReLU 

𝐶𝑜𝑛𝑣3𝐷3 
(2, 16, 16, 256) 1769728 ReLU 

𝐶𝑜𝑛𝑣3𝐷4 
(1, 4, 4, 256) 1769728 ReLU 

𝐷𝑒𝑛𝑠𝑒 
1024 1049600 ReLU 

𝐷𝑒𝑛𝑠𝑒1 
1024 1049600 ReLU 

𝐷𝑒𝑛𝑠𝑒2 
2 2050 ReLU 
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Table 2. Accuracy and F1-score obtained using the ACDC dataset in the deep 

learning strategy. ACC accounts for Accuracy and F1 for F1-score.  The cardiac 

conditions are: the dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy 

(HCM), abnormal right ventricle (RV), the myocardial infarction (MINF), and normal 

conditions (N). 

Cardiac 
diseases 

𝑎𝑇(𝑡) 𝑎𝑁(𝑡) Divergency Vorticity Optical flow Cine-MRI 

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 

MINF vs DCM 82,50 83,72 80,00 80,00 70,83 77,57 85,00 84,21 89,20 85,00 81,20 72,50 

MINF vs HCM 65,20 61,53 70,00 70,00 70,2 77,57 62,50 61,53 73,09 65,0 59,09 57,50 

MINF vs RV 80,00 77,77 80,00 78,94 80,30 80,00 85,00 78,94 81,33 77,50 70,53 70,00 

MINF vs N 72.50 70.27 72.50 71.72 87.59 87.59 77.50 74.28 72.05 70.00 76.71 70,00 

DCM vs HCM 55.00 52.63 62.50 59.45 59.40 73.81 55.00 50.00 80.71 72.50 60.38 65.00 

DCM vs RV 67.50 64.86 60.00 61.90 72.56 67.54 65.00 65.00 72.78 62.50 51.43 55.00 

DCM vs N 85.00 84.21 85.00 85.00 80.30 60.99 85.00 85.00 73.38 72.50 83.38 80.00 

HCM vs RV 62.50 63.41 70.00 68.42 84.67 74.00 62.50 61.53 78.38 75.00 31.95 50.00 

HCM vs N 75.00 73.68 72.50 73.17 81.25 64.25 65.00 61.11 70.00 67.50 75.76 67.50 

RV vs N 75.00 73.68 72.50 70.27 65.15  55.05 67.50 66.66 67.40 67.50 57.65 55.00 

MEAN 71.75 70.58 72.50 71.89 75.23 72.34 70.50 68.83 75.83 71.50 64.81 57.95 
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Table 3. Accuracy and F1-score obtained by using the ACDC dataset in the deep 

learning strategy taking into account diverse concatenations among time. The 

kinematic maps herein considered are 𝑎𝑁: Normal acceleration, 𝑎𝑇: Tangential 

acceleration 𝑑𝑖𝑣: divergency, and 𝑣𝑜𝑟: vorticity. The cardiac conditions are: the 

dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), abnormal 

right ventricle (RV), the myocardial infarction (MINF), and normal conditions (N) 

Cardiac disease 

(𝑎𝑁(𝑡), 𝑎𝑇(𝑡), 
 𝑑𝑖𝑣(𝑡)) 

(𝑎𝑁(𝑡), 𝑎𝑇(𝑡),  
𝑣𝑜𝑟(𝑡)) 

(𝑎𝑁(𝑡), 𝑑𝑖𝑣(𝑡), 
 𝑣𝑜𝑟(𝑡)) 

(𝑎𝑇(𝑡), 𝑑𝑖𝑣(𝑡),  
𝑣𝑜𝑟(𝑡)) 

ACC F1 ACC F1 ACC F1 ACC F1 

MINF vs DCM 80.00 80.00 77.50 79.06 82.50 82.05 80.00 80.02 

MINF vs HCM 62.50 61.54 62.50 63.41 60.00 57.89 65.00 66.67 

MINF vs RV 85.00 85.00 85.00 85.00 85.00 85.00 80.00 77.76 

MINF vs N 75.00 76.19 85.00 83.34 77.50 75.67 80.00 78.94 

DCM vs HCM 55.00 52.63 50.00 47.36 55.00 52.63 52.50 53.65 

DCM vs RV 70.00 68.42 67.50 66.67 77.50 79.06 67.50 68.29 

DCM vs N 85.00 85.00 90.00 89.47 90.00 89.47 92.50 92.68 

HCM vs RV 67.50 66.67 62.50 65.11 67.50 69.76 55.00 59.09 

HCM vs N 75.00 75.00 87.50 87.80 80.00 78.94 75.00 73.68 

RV vs N 80.00 80.00 85.00 84.21 82.50 82.92 85.00 84.21 

MEAN 73.50 73.05 75.25 75.14 75.75 75.34  73.25 73.50 
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Table 4. The accuracy obtained using the ACDC dataset in the binary embedding 

classification with random forest. 𝑎𝑁: Normal acceleration, 𝑑𝑖𝑣: divergency, 𝑣𝑜𝑟: 

vorticity. The cardiac conditions are: the dilated cardiomyopathy (DCM), 

hypertrophic cardiomyopathy (HCM), abnormal right ventricle (RV), the myocardial 

infarction (MINF), and normal conditions (N). 

Cardiac disease   

 (𝑎𝑁(𝑡), 𝑑𝑖𝑣(𝑡), 𝑣𝑜𝑟(𝑡)) 

 Accuracy F1-Score Precision Recall 

MINF vs DCM  100.00 100.00 100.00 100.00 

MINF vs HCM  80.00 78.10 85.00 80.00 

MINF vs RV  100.00 100.00 100.00 100.00 

MINF vs N  80.00 81.90 90.00 80.00 

DCM vs HCM  80.00 80.00 86.67 80.00 

DCM vs RV  60.00 66.30 86.67 60.00 

DCM vs N  60.00 60.00 60.00 60.00 

HCM vs RV  60.00 60.00 60.00 60.00 

HCM vs N  80.00 71.11 64.00 80.00 

RV vs N  80.00 78.10 85.00 80.00 

MEAN  78.00 77.55 81.73 78.00 
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Table 5. The accuracy obtained using the ACDC dataset in the multi-class 

embedding classification with random forest between normal cardiac sequences 

w.r.t any cardiac disease. 

  Cardiac diseases  Accuracy F1-Score Precision Recall 

Cetin et al. (2017) [2]   94.00  - 94.00 93.00 

Insensee et al. (2017) [9]  92.00 - 92.00 92.00 

Khened et al. (2017) [5]  90.00 - 83.40 100.00 

Wolterink et al. (2017) [10]  86.00 - 84.00 91.00 

Ours  92.31 91.19 92.95 92.31 

 


