Producción y caracterización de un anticuerpo policlonal dirigido contra la fosfoproteína del virus de la rabia
Palabras clave:
virus de la rabia, inmunoquímica, fosfoproteínas, proteínas recombinantes, Escherichia coli
Resumen
Introducción. La producción de una proteína viral recombinante facilita la aplicación de diversas metodologías bioquímicas en investigación básica de los virus con relevancia clínica. Además, la obtención de un anticuerpo policlonal dirigido contra la proteína P permite el estudio de su función y está soportado en la inexistencia de un anticuerpo comercial dirigido contra esa proteína.Objetivo. Producir y caracterizar un anticuerpo policlonal dirigido contra la proteína P recombinante del virus de la rabia expresada en Escherichia coli.
Materiales y métodos. El gen P que codifica para la proteína P del virus de la rabia, fue amplificado por reacción en cadena de la polimerasa de transcriptasa reversa y clonado en el vector de expresión PinPointTM Xa-1 T (PROMEGA). La proteína recombinante P fue expresada en E. coli purificada por cromatografía de afinidad y usada para la producción del anticuerpo policlonal anti-P. El anticuerpo obtenido fue purificado y caracterizado por inmunocitoquímica con un sistema enzimático, inmunofluorescencia, Cell-ELISA fluorométrica y Western blotting.
Resultados. La proteína recombinante se expresó eficientemente como una proteína de fusión biotinilada de aproximadamente 50 kd, que corresponde a la forma completa de la proteína P del virus de la rabia. El anticuerpo policlonal anti-P detectó con alta especificidad la proteína P en cultivos de neuronas sensoriales infectados con el virus de la rabia.
Conclusión. La proteína P recombinante expresada en E. coli se constituyó en un antígeno específico para producir un anticuerpo policlonal que reconoce la proteína P nativa en células infectadas con el virus de la rabia.
Descargas
La descarga de datos todavía no está disponible.
Referencias bibliográficas
1. World Health Organization. Rabies. Fact Sheet No. 99. Switzerland: WHO Press; 2001.
2. Real E, Rain JC, Battaglia V, Jallet C, Perrin P, Tordo N, et al. Antiviral drug discovery strategy using combinatorial libraries of structurally constrained peptides. J Virol. 2004;78:7410-7.
3. Gupta AK, Blondel D, Choudhary S, Banerjee AK. The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol. 2000;74:91-8.
4. Jacob Y, Badrane H, Ceccaldi PE, Tordo N. Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol. 2000;74:10217-22.
5. Castellanos JE, Martínez-Gutiérrez M, Hurtado H, Kassis R, Bourhy H, Acosta O, et al. Studying neurotrophin antiviral effect on rabies-infected dorsal root ganglio cultures. J Neurovirol. 2005;11:403-10.
6. Rincón V, Corredor A, Martínez-Gutiérrez M, Castellanos JE. Fluorometric cell-Elisa for quantifying rabies infection and heparin inhibition. J Virol Methods. 2005;127:33-9.
7. Smith PK, Krohn RI, Hermanson G, Mallia A, Gartner FH, Provenzano M, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85.
8. Wiechelman KJ, Braun RD, Fitzpatrick JD. Investigation of the bicinchoninic acid protein assay identification of the groups responsible for color formation. Anal Biochem. 1988;175:231-7.
9. Chenik M, Chebli K, Blondel D. Translation initiation at alternative in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J Virol. 1995;69:707-12.
10. He Y, Gao D, Zhang M. Expression of the nucleoprotein gene of rabies virus for use as a diagnostic reagent. J Virol Methods. 2006;138:147-51.
11. Reyes del Valle J, Del Angel RM. Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods. 2004;116:95-102.
12. Tuffereau C, Bénéjean J, Blondel D, Kieffer B, Flamand A. Low-affinity nerve growth factor receptor (p75NTR) can serve as a receptor for rabies virus. EMBO J. 1998;17:7250-9.
13. Langevin C, Jaaro H, Bressanelli S, Fainzilber M, Tuffereau C. Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem. 2002;277:37655-62.
14. Blondel D, Regad T, Poisson N, Pavie B, Harper F, Pandolfi PP et al. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene. 2002;21:7957-70.
15. Nadin-Davis SA, Sheen M, Andel-Malik M, Elmgren L, Armstrong J, Wandeler AI. A panel of monoclonal antibodies targeting the rabies virus phosphoprotein identifies a highly variable epitope of value for sensitive strain discrimination. J Clin Microbiol. 2000;38:1397-403.
16. Raux H, Iseni F, Lafay F, Blondel D. Mapping of monoclonal antibody epitopes of the rabies virus P protein. J Gen Virol. 1997;78:119-24.
17. Motoi Y, Inoue S, Hatta H, Sato K, Morimoto K, Yamada A. Detection of rabies-specific antigens by egg yolk antibody (IgY) to the recombinant rabies virus proteins produced in Escherichia coli. Jpn J Infect Dis. 2005;58:115-8.
2. Real E, Rain JC, Battaglia V, Jallet C, Perrin P, Tordo N, et al. Antiviral drug discovery strategy using combinatorial libraries of structurally constrained peptides. J Virol. 2004;78:7410-7.
3. Gupta AK, Blondel D, Choudhary S, Banerjee AK. The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol. 2000;74:91-8.
4. Jacob Y, Badrane H, Ceccaldi PE, Tordo N. Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol. 2000;74:10217-22.
5. Castellanos JE, Martínez-Gutiérrez M, Hurtado H, Kassis R, Bourhy H, Acosta O, et al. Studying neurotrophin antiviral effect on rabies-infected dorsal root ganglio cultures. J Neurovirol. 2005;11:403-10.
6. Rincón V, Corredor A, Martínez-Gutiérrez M, Castellanos JE. Fluorometric cell-Elisa for quantifying rabies infection and heparin inhibition. J Virol Methods. 2005;127:33-9.
7. Smith PK, Krohn RI, Hermanson G, Mallia A, Gartner FH, Provenzano M, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85.
8. Wiechelman KJ, Braun RD, Fitzpatrick JD. Investigation of the bicinchoninic acid protein assay identification of the groups responsible for color formation. Anal Biochem. 1988;175:231-7.
9. Chenik M, Chebli K, Blondel D. Translation initiation at alternative in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J Virol. 1995;69:707-12.
10. He Y, Gao D, Zhang M. Expression of the nucleoprotein gene of rabies virus for use as a diagnostic reagent. J Virol Methods. 2006;138:147-51.
11. Reyes del Valle J, Del Angel RM. Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods. 2004;116:95-102.
12. Tuffereau C, Bénéjean J, Blondel D, Kieffer B, Flamand A. Low-affinity nerve growth factor receptor (p75NTR) can serve as a receptor for rabies virus. EMBO J. 1998;17:7250-9.
13. Langevin C, Jaaro H, Bressanelli S, Fainzilber M, Tuffereau C. Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem. 2002;277:37655-62.
14. Blondel D, Regad T, Poisson N, Pavie B, Harper F, Pandolfi PP et al. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene. 2002;21:7957-70.
15. Nadin-Davis SA, Sheen M, Andel-Malik M, Elmgren L, Armstrong J, Wandeler AI. A panel of monoclonal antibodies targeting the rabies virus phosphoprotein identifies a highly variable epitope of value for sensitive strain discrimination. J Clin Microbiol. 2000;38:1397-403.
16. Raux H, Iseni F, Lafay F, Blondel D. Mapping of monoclonal antibody epitopes of the rabies virus P protein. J Gen Virol. 1997;78:119-24.
17. Motoi Y, Inoue S, Hatta H, Sato K, Morimoto K, Yamada A. Detection of rabies-specific antigens by egg yolk antibody (IgY) to the recombinant rabies virus proteins produced in Escherichia coli. Jpn J Infect Dis. 2005;58:115-8.
Cómo citar
1.
Castañeda NY, Chaparro-Olaya J, Castellanos JE. Producción y caracterización de un anticuerpo policlonal dirigido contra la fosfoproteína del virus de la rabia. biomedica [Internet]. 1 [citado 22 de mayo de 2022];27(2):257-67. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/221
Más sobre este tema
- Inhibición de las respuestas de defensina A y cecropina A contra la infección del virus dengue 1 en Aedes aegypti
- Actividad antimicrobiana de hongos endófitos de las plantas medicinales Mammea americana (Calophyllaceae) y Moringa oleifera (Moringaceae)
- Detección de enterobacterias multirresistentes aisladas en aguas de los ríos que desembocan en la bahía de Guanabara y en muestras de hospitales de Río de Janeiro, Brasil
- Multirresistencia a medicamentos y factores de riesgo asociados con infecciones urinarias por Escherichia coli adquiridas en la comunidad, Venezuela
- Diversidad genética de cepas extraintestinales de Escherichia coli productoras de las betalactamasas TEM, SHV y CTX-M asociadas a la atención en salud
- Síntesis de nanopartículas de ácido poli-láctico cargadas con antibióticos y su actividad antibacteriana contra Escherichia coli O157:H7 y Staphylococcus aureus resistente a meticilina
- Identificación de Escherichia coli enteropatógena en niños con síndrome diarreico agudo del Estado Sucre, Venezue
- Influencia del campo magnético sobre el crecimiento de microorganismos patógenos ambientales aislados en el Archivo Nacional de la República de Cuba
Número
Sección
Artículos originales
Ninguna publicación, nacional o extranjera, podrá reproducir ni traducir los artículos ni sus resúmenes, sin previa autorización escrita del Comité Editorial de la revista Biomédica