Detección de enterobacterias multirresistentes aisladas en aguas de los ríos que desembocan en la bahía de Guanabara y en muestras de hospitales de Río de Janeiro, Brasil

Verônica Dias Gonçalves, Frederico Meirelles-Pereira, Márcio Cataldo, Bianca de Oliveira Fonseca, Barbara Araujo Nogueira, Julianna Giordano Botelho Olivella, Francisco de Assis Esteves, Ana Luiza Mattos-Guaraldi, Arnaldo Feitosa Braga de Andrade, Alexandre Ribeiro Bello, José Augusto Adler Pereira, .

Palabras clave: Klebsiella pneumoniae, Escherichia coli, resistencia a múltiples medicamentos, plásmidos, aguas residuales, Brasil

Resumen

Introducción. El uso de antibióticos en seres humanos, en la industria pecuaria y en las actividades veterinarias induce una presión selectiva que resulta en la colonización e infección con cepas resistentes.
Objetivo. Determinar la presencia de genes de resistencia a aminoglucósidos, betalactámicos y fluoroquinolonas en cepas de Klebsiella pneumoniae subsp. pneumoniae, K. pneumoniae subsp. ozaenae y Escherichia coli, obtenidas de muestras de agua de los ríos que desembocan en la bahía de Guanabara y de muestras clínicas de hospitales de Río de Janeiro.
Materiales y métodos. En la selección de las cepas resistentes obtenidas de las muestras de agua de los ríos, se emplearon medios de cultivo que contenían 32 μg/ml de cefalotina y 8 μg/ml de gentamicina. En el caso de las muestras de especímenes clínicos, se usaron medios de cultivo que contenían 8 μg/ml de gentamicina. Las cepas se identificaron y se sometieron a pruebas de sensibilidad antimicrobiana, extracción de ADN plasmídico y pruebas de reacción en cadena de la polimerasa (PCR) para detectar los genes que codifican aquellas enzimas que modifican los aminoglucósidos, las betalactamasas de espectro extendido (BLEE) y los mecanismos de resistencia a las quinolonas mediados por plásmidos.
Resultados. Se encontraron perfiles de resistencia a los antimicrobianos similares en los dos grupos. En todas las bacterias obtenidas de las muestras de agua y en 90 % de las muestras clínicas, se evidenciaron bandas de plásmidos asociados con la transferencia de genes de resistencia. En las pruebas de PCR, se obtuvieron productos de amplificación de los genes de resistencia para las tres clases de antimicrobianos analizados, en el 7,4 % de las bacterias recuperadas de las muestras de agua y en el 20 % de aquellas recuperadas de las muestras clínicas.
Conclusión. La detección de microorganismos con elementos genéticos que confieren resistencia a los antibióticos en ambientes como el agua, es una estrategia necesaria para prevenir y controlar la diseminación de estos agentes patógenos con potencial para infectar a humanos y a otros animales en dichos ambientes.

Descargas

La descarga de datos todavía no está disponible.
  • Verônica Dias Gonçalves Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil

    Departamento de Microbiología, Inmunología y parasitología, Facultad de Ciencias Médicas, UERJ, Rio de Janeiro, RJ, Brasil

    Laboratório de Referência Nacional de Cólera e Enteroinfecções Bacterianas-LRNCEB- IOC/FIOCRUZ, Rio de Janeiro, Brasil

  • Frederico Meirelles-Pereira Laboratório de Limnologia, Departamento de Ecologia, Centro de Ciências da Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Márcio Cataldo Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Bianca de Oliveira Fonseca Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Barbara Araujo Nogueira Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Julianna Giordano Botelho Olivella Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Francisco de Assis Esteves Laboratório de Limnologia, Departamento de Ecologia, Centro de Ciências da Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Ana Luiza Mattos-Guaraldi Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Arnaldo Feitosa Braga de Andrade Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • Alexandre Ribeiro Bello Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
  • José Augusto Adler Pereira Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil

Referencias

Ramphal R, Ambrose PG. Extended-spectrum β-lactamases and clinical outcomes: Current data. Clin Infect Dis. 2006;42(Suppl.4):S164-72. https://doi.org/10.1086/500663

Shin SY, Kwon KC, Park JW, Song JH, Ko YH, Sung JY, et al. Characteristics of aac(6’)- Ib-cr gene in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from Chungnam area. Korean J Lab Med. 2009;29:541-50. https://doi.org/10.3343/kjlm.2009.29.6.541

Harada K, Morimoto E, Kataoka Y, Takahashi T. Clonal spread of antimicrobial-resistant Escherichia coli isolates among pups in two kennels. Acta Vet Scand. 2011;53:11-7. https://doi.org/10.1186/1751-0147-53-11

Alem N, Frikh M, Srifi A, Maleb A, Chadli M, Sekhsokh Y, et al. Evaluation of antimicrobial susceptibility of Escherichia coli strains isolated in Rabat University Hospital (Morocco). BMC Res Notes. 2015;8:392-5. https://doi.org/10.1186/s13104-015-1380-9

Ajiboye RM, Solberg OD, Lee BM, Raphael E, DebRoy C, Riley LW. Global spread of mobile antimicrobial drug resistance determinants in human and animal Escherichia coli and Salmonella strains causing community-acquired infections. Clin Infect Dis. 2009;49:365-71. https://doi.org/10.1086/600301

Sengupta S, Chattopadhyay MK, Grossart H-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47. https://doi.org/10.3389/fmicb.2013.00047

Martínez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci. 2009;276:2521-30. https://doi.org/10.1098/rspb.2009.0320

Bonelli RR, Moreira BM, Picão RC. Antimicrobial resistance among Enterobacteriaceae in South America: History, current dissemination status and associated socioeconomic factors. Drug Resist Updat. 2014;17:24-36. https://doi.org/10.1016/j.drup.2014.02.001

Bok E, Mazurek J, Stosik M, Wojciech M, Baldy-Chudzik K. Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle. Int J Environ Res Public Health. 2015;12:970-85. https://doi.org/10.3390/ijerph120100970

Resende JA, Borges ML, Pacheco KD, Ribeiro IH, Cesar DE, Silva VL, et al. Antibiotic resistance in potentially bacteriocinogenic probiotic bacteria in aquaculture environments. Aquac Res. 2017;48:2113-9. https://doi.org/10.1111/are.13047

Guenther S, Ewers C, Wieler LH. Extended-spectrum beta-lactamases producing E. coli in wild life, yet another form of environmental pollution? Front Microbiol. 2011;2:246. https://doi.org/10.3389/fmicb.2011.00246

Jones-Dias D, Manageiro V, Graça R, Sampaio DA, Albuquerque T, Themudo P, et al. QnrS1- and Aac(6')-Ib-cr-Producing Escherichia coli among isolates from animals of different sources: Susceptibility and genomic characterization. Front Microbiol. 2016;7:671. https://doi.org/10.3389/fmicb.2016.00671

Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas). 2011;47:137-46.

Vaidya VK. Horizontal transfer of antimicrobial resistance by extended spectrum β lactamase-producing Enterobacteriaceae. J Lab Physicians. 2011;3:37-42. https://doi.org/10.4103/0974-2727.78563

Lyimo B, Buza J, Subbiah M, Temba S, Kipasika H, Smith W, et al. IncF plasmids are commonly carried by antibiotic resistant Escherichia coli isolated from drinking water sources in Northern Tanzania. Int J Microbiol. 2016;2016:3103672. https://doi.org/10.1155/2016/3103672

Ibekwe AM, Murinda SE, Graves AK. Microbiological evaluation of water quality from urban watersheds for domestic water supply improvement. Int J Environ Res Public Health. 2011;8:4460-76. https://doi.org/10.3390/ijerph8124460

Bayram A, Önsoy H, Bulut VN, Akinci G. Influences of urban wastewaters on the stream water quality: A case study from Gumushane Province, Turkey. Environ Monit Assess. 2013;185:1285-303. https://doi.org/10.1007/s10661-012-2632-y

Derrien M, Jardé E, Gruau G, Pourcher AM, Gourmelon M, Jadas-Hécart A, et al. Origin of fecal contamination in waters from contrasted areas: Stanols as microbial source tracking markers. Water Res. 2012;46:4009-16. https://doi.org/10.1016/j.watres.2012.05.003

Instituto Estadual de Meio Ambiente. A Baía de Guanabara, segunda maior baía do litoral brasileiro, possui uma área de cerca de 380 km², englobando praticamente toda a Região Metropolitana do Estado do Rio de Janeiro. Accessed: February 15, 2018. Available at: http://www.inea.rj.gov.br/Portal/MegaDropDown/Monitoramento/Qualidadedaagua/Baias/BaiadaGuanabara/index.htm

Meirelles-Pereira F, Meirelles AS, Gomes-da-Silva MC, Gonçalves VD, Brum PR, Castro EA, et al. Ecological aspects of the antimicrobial resistance in bacteria of importance to human infections. Braz J Microbiol. 2002;33:287-93. https://doi.org/10.1590/S1517-83822002000400002

Environment Protection Authority. EPA Guidelines: Regulatory monitoring and testing water and wastewater sampling. Adelaide, SA: EPA; 2007.

Winn W, Allen S, Janda W, Koneman E, Gary P, Screckenberger P, et al. Koneman’s color atlas and textbook of diagnostic microbiology. Philadelphia, New York: Lippincott Williams & Wilkins; 2006.

Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-fourth Informational Supplement M100-S24. Wayne, PA: CLSI; 2014.

Clinical Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility testing. Approved Standard CLSI Document M2. Wayne, PA: CLSI; 2010.

Gonçalves VD, Provençano AF, Espírito-Santo C, Bernardes O, Queiroz ML, Bello AR, et al. Evaluation of different protocols for detection of enterobacterial plasmids codifying for antimicrobial resistance. Sodebrás. 2013;8:9-15.

Arlet G, Philippon A. Construction by polymerase chain reaction and use of intragenic DNA probes for three main types of transferable beta-lactamases (TEM, SHV, CARB). FEMS Microbiol Lett. 1991;66:19-25.

Pitout JDD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004;42:5715-21. https://doi.org/10.1128/JCM.42.12.5715-5721.2004

van de Klundert JAM, Vliengenthart JS. PCR detection of genes coding aminoglicoside-modifying enzymes. In: Persing DH, Smith TF, Tenover FC. White TJ, editors. Diagnostic molecular microbiology: Principles and applications. Rochester: Mayo Foundation; 1993. p. 547-52.

Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, et al. Plasmid-mediated quinolone resistance determinants qnr and aac(6’)-Ib-cr in extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother. 2008;61:1003-6. https://doi.org/10.1093/jac/dkn063

Yigit H, Queenan AM, Anderson GJ, Domenech-Sánchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151-61. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

Negreiros DH, Araújo FP, Coreixas MA. Nossos Rios. Niterói: Instituto Baía de Guanabara; 2002. p. 31.

Oliveira AJFC, França PTR, Pinto AB. Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: Evidences of resistance dissemination. Environ Monit Assess. 2010;169:375-84. https://doi.org/10.1007/s10661-009-1180-6

Zhao J-y, Dang H. Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Microb Ecol. 2012;64:187-99. https://doi.org/10.1007/s00248-012-0008-z

Prado T, Pereira WC, Silva DM, Seki LM, Carvalho AP, Asensi MD. Detection of extended spectrum b-lactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. Lett Appl Microbiol. 2008;46:136-41. https://doi.org/10.1111/j.1472-765X.2007.02275.x

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Ryu S-H, Park S-G, Choi S-M, Hwang Y-O, Ham H-J, Kim S-U, et al. Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. Int J Food Microbiol. 2012;152:14-8. https://doi.org/10.1016/j.ijfoodmicro.2011.10.003

Gonçalves VD, Lengruber FB, Fonseca BO, Pereira RM, Melo LD, Lopes UG, et al. Detection and characterization of multidrug-resistant enterobacteria bearing aminoglycosi demodifying gene in a university hospital at Rio de Janeiro, Brazil, along three decades. Biomédica. 2015;35:117-24. https://doi.org/10.7705/biomedica.v35i1.2276

Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13.

Leavitt A, Carmeli Y, Chmelnitsky I, Goren MG, Ofek I, Navon-Venezia S. Molecular epidemiology, sequence types, and plasmid analyses of KPC-producing Klebsiella pneumoniae strains in Israel. Antimicrob Agents Chemother. 2010;54:3002-6. https://doi.org/10.1128/AAC.01818-09

Takasu H, Susuki S, Reungsang A, Viet PH. Fluoroquinolone (FQ) contamination does not correlate with occurrence of fq-resistant bacteria in aquatic environments of Vietnam and Thailand. Microbes Environ. 2011;26:135-43. https://doi.org/10.1264/jsme2.ME10204

Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin Microbiol Rev. 2009;22:664-89. https://doi.org/10.1128/CMR.00016-09

Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005;56:463-9. https://doi.org/10.1093/jac/dki245

Jeong HS, Bae IK, Shin JH, Kim SH, Chang CL, Jeong J, et al. Fecal colonization of Enterobacteriaceae carrying plasmid-mediated quinolone resistance determinants in Korea. Microb Drug Resist. 2011;17:507-12. https://doi.org/10.1089/mdr.2011.0040

Minarini LA, Poirel L, Cattoir V, Darini AL, Nordmann P. Plasmid-mediated quinolone resistance determinants among enterobacterial isolates from outpatients in Brazil. J Antimicrob Chemother. 2008;62:474-8. https://doi.org/10.1093/jac/dkn237

Öktem IM, Gülay Z, Bicmen M, Gür D, Gültekin M, Öğünç D, et al. qnrA prevalence in extended-spectrum β-lactamase-positive Enterobacteriaceae isolates from Turkey. Jpn J Infect Dis. 2008;61:13-7.

Mokracka J, Koczura R, Jabłońska L, Kaznowski A. Phylogenetic groups, virulence genes and quinolone resistance of integron-bearing Escherichia coli strains isolated from a wastewater treatment plant. Antonie Van Leeuwenhoek. 2011;99:817-24. https://doi.org/10.1007/s10482-011-9555-4

Kolawole OM, Ajayi KT, Olayemi AB, Okoh AI. Assessment of water quality in Asa River (Nigeria) and its indigenous Clarias gariepinus fish. Int J Environ Res Public Health. 2011;8:4332-52. https://doi.org/10.3390/ijerph8114332

Cómo citar
Dias Gonçalves, V., Meirelles-Pereira, F., Cataldo, M., de Oliveira Fonseca, B., Araujo Nogueira, B., Botelho Olivella, J. G., de Assis Esteves, F., Mattos-Guaraldi, A. L., Braga de Andrade, A. F., Ribeiro Bello, A., & Adler Pereira, J. A. (2019). Detección de enterobacterias multirresistentes aisladas en aguas de los ríos que desembocan en la bahía de Guanabara y en muestras de hospitales de Río de Janeiro, Brasil. Biomédica, 39, 135-149. https://doi.org/10.7705/biomedica.v39i0.4391
Publicado
2019-05-01