Consumo crónico de edulcorantes en ratones y su efecto sobre el sistema inmunitario y la microbiota del intestino delgado

Jorge Alberto Escoto , Beatriz Elina Martínez-Carrillo , Ninfa Ramírez-Durán , Hugo Ramírez-Saad , José Félix Aguirre-Garrido , Roxana Valdés-Ramos , .

Palabras clave: edulcorantes, intestino delgado, microbioma gastrointestinal, sacarosa, estevia

Resumen

Introducción. Los edulcorantes son aditivos que se consumen en los alimentos. Pueden ser naturales (sacarosa y estevia) o artificiales (sucralosa). Actualmente, se consumen rutinariamente en múltiples productos, y sus efectos en la mucosa y la microbiota del intestino delgado aún son controversiales
Objetivo. Relacionar el consumo de edulcorantes y su efecto en el sistema inmunitario y la microbiota del intestino delgado en ratones CD1.
Materiales y métodos. Se utilizaron 54 ratones CD1 de tres semanas de edad divididos en tres grupos: un grupo de tres semanas sin tratamiento, un grupo tratado durante seis semanas y un grupo tratado durante 12 semanas. Se les administró sacarosa, sucralosa y estevia. A partir del intestino delgado, se obtuvieron linfocitos B CD19+ y células IgA+, TGF-β (Transforming Growth Factor-beta) o el factor de crecimiento transformador beta (TGF-beta), IL-12 e IL-17 de las placas de Peyer y de la lámina propia. De los sólidos intestinales se obtuvo el ADN para identificar las especies bacterianas.
Resultados. Después del consumo de sacarosa y sucralosa durante 12 semanas, se redujeron las comunidades bacterianas, la IgA+ y el TGF-beta, se aumentó el CD19+, y además, se incrementaron la IL-12 y la IL-17 en las placas de Peyer; en la lámina propia, aumentaron todos estos valores. En cambio, con la estevia mejoraron la diversidad bacteriana y el porcentaje de linfocitos CD19+, y hubo poco incremento de IgA+, TGF-b e IL-17, pero con disminución de la IL-17.
Conclusión. La sacarosa y la sucralosa alteraron negativamente la diversidad bacteriana y los parámetros inmunitarios después de 12 semanas, en contraste con la estevia que resultó benéfica para la mucosa intestinal.

Descargas

La descarga de datos todavía no está disponible.
  • Jorge Alberto Escoto Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México https://orcid.org/0000-0002-6256-3285
  • Beatriz Elina Martínez-Carrillo Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México http://orcid.org/0000-0003-3831-6660
  • Ninfa Ramírez-Durán Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México https://orcid.org/0000-0003-3108-895X
  • Hugo Ramírez-Saad Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
  • José Félix Aguirre-Garrido Biotecnología Ambiental, Universidad Autónoma Metropolitana-Lerma, Lerma, Estado de México, México
  • Roxana Valdés-Ramos Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México https://orcid.org/0000-0003-0093-886X

Referencias bibliográficas

Gil-Campos M, San José-González MA, Díaz Martín JJ. Uso de azúcares y edulcorantes en la alimentación del niño. Recomendaciones del Comité de Nutrición de la Asociación Española de Pediatría. Anales d e Pediatría. 2015;83:353.e1-e7. https://doi.org/10.1016/j.anpedi.2015.02.013

García-Almeida JM, Casado-Fernández GM, García-Alemán J. Una visión global y actual de los edulcorantes. Aspectos de regulación. Nutr Hosp. 2013;28:17-31.https://doi.org/10.3305/nh.2013.28.sup4.6793

Durán-Agüero S, Cornwall JR, Vega CE, Salazar de Ariza J, Arrivillaga KC, del Pilar M, et al. Consumo de edulcorantes no nutritivos en bebidas carbonatadas en estudiantes universitarios de algunos países de Latinoamérica. Nutr Hosp. 2015;31:959-65. http://doi.org/10.3305/nh.2015.31.2.8026

Johnston CA, Stevens B, Foreyt JP. The role of low-calorie sweeteners in diabetes. Eur Endocrinol. 2013;9:96-8. https://doi.org/10.17925/EE.2013.09.02.96

Betton GR. A review of the toxicology and pathology of the gastrointestinal tract. Cell Biol Toxicol. 2013;29:321-38. https://doi.org/10.1007/s10565-013-9257-y

Volk N, Lacy B. Anatomy and physiology of the small bowel. Gastrointest Endosc Clin N Am. 2017;27:1-13. https://doi.org/10.1016/j.giec.2016.08.001

Rubio CA, Schmidt PT. Gut-associated lymphoid tissue (GALT) carcinoma or dome carcinoma? Anticancer Res. 2016;36:5385-87. https://doi.org/10.21873/anticanres.11113

Ramiro-Puig E, Pérez-Cano FJ, Castellote C, Franch A, Castell M. El intestino: pieza clave del sistema. Rev Esp Enferm Dig. 2008;100:29-34. https://doi.org/10.4321/s1130-01082008000100006

Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, et al. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients. 2019;11:2393. https://doi.org/10.3390/nu11102393

Macpherson AJ, Geuking MB, McCoy KD. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol. 2012;33:160-7. https://doi.org/10.1016/j.it.2012.02.002

Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759-95. https://doi.org/10.1146/annurev-immunol-020711-074937

Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. J Immunol. 2013;190:1389-95. https://doi.org/10.4049/jimmunol.1203100

Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science. 2002;298:1424-7. https://doi.org/10.1126/science.1077336

Albright AR, Kabat J, Li M, Raso F, Reboldi A, Muppidi JR. TGF-β signaling in germinal center B cells promotes the transition from light zone to dark zone. J Exp Med. 2019;216:2531-45. https://doi.org/10.1084/jem.20181868

Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117:1162-72. https://doi.org/10.1378/chest.117.4.1162

Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 2015;72:146-53. https://doi.org/10.1016/j.cyto.2014.12.027

Lochner M, Bérard M, Sawa S, Hauer S, Gaboriau-Routhiau V, Fernández TD, et al. Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells. J Immunol. 2011;186:1531-7. https://doi.org/10.4049/jimmunol.1001723

Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821-52.

https://doi.org/10.1146/annurev.immunol.25.022106.141557

Behzadi P, Behzadi E, Ranjbar R. IL-12 family cytokines: General characteristics, pathogenic microorganisms, receptors, and signalling pathways. Acta Microbiol Immunol Hung. 2016;63:1-25. https://doi.org/10.1556/030.63.2016.1.1

Rosales-Gómez CA, Martínez-Carrillo BE, Reséndiz-Albor AA, Ramírez-Durán N, Valdés-Ramos R, Mondragón-Velásquez T, et al. Chronic consumption of sweeteners and its effect on glycaemia, cytokines, hormones, and lymphocytes of GALT in CD1 mice. Biomed Res Int. 2018;1345282. https://doi.org/10.1155/2018/1345282

Martínez-Carrillo BE, Rosales-Gómez CA, Ramírez-Durán N, Reséndiz-Albor AA, Escoto-Herrera JA, Mondragón-Velásquez T, et al. Effect of chronic consumption of sweeteners on microbiota and immunity in the small intestine of young mice. Int J Food Sci. 2019; 2019:9619020. https://doi.org/10.1155/2019/9619020

de Aluja AS. Animales de laboratorio y la Norma Oficial Mexicana (NOM-062-ZOO-1999). Gac Med Mex. 2002;138:295-8.

Arriola-Peñalosa MA. Productos y servicios. Bebidas saborizadas no alcohólicas, sus congelados, productos concentrados para prepararlas y bebidas adicionadas con cafeína. Especificaciones y disposiciones sanitarias. Métodos de prueba”. Norma Oficial Mexicana NOM-218-SSA1-2011. Diario Oficial de la Federación, 10 de febrero de 2012. Fecha de consulta: 20 de febrero de 2021. Disponible en: http://dof.gob.mx/normasOficiales/4643/salud/salud.htm

Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41:111-9. https://doi.org/10.1258/002367707779399518

Diniz YS, Burneiko RM, Seiva FR, Almeida FQ, Machado-Galhardi C, Novelli-Filho JL, et al. Diet compounds, glycemic index and obesity-related cardiac effects. Int J Cardiol. 2008;124:92-9. https://doi.org/10.1016/j.ijcard.2006.12.025

Frank J, Wallace JF, Pardo S, Parkes JL. Performance of the CONTOUR® TS Blood Glucose Monitoring System. J Diabetes Sci Technol. 2011;5:198-205. https://doi.org/10.1177/193229681100500128

Goodyear AW, Kumar A, Dow S, Ryan EP. Optimization of murine small intestine leukocyte isolation for global immune phenotype analysis. J Immunol Methods. 2014;405:97-108. https://doi.org/10.1016/j.jim.2014.01.014

Reséndiz-Albor AA, Esquivel R, López-Revilla R, Verdín L, Moreno-Fierros L. Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 2005;76:2783-803. https://doi.org/10.1016/j.lfs.2004.08.042

Arciniega-Martínez IM, Campos-Rodríguez R, Drago-Serrano ME, Sánchez-Torres LE, Cruz-Hernández TR, Reséndiz-Albor AA. Modulatory effects of oral bovine lactoferrin on the IgA response at inductor and effector sites of distal small intestine from BALB/c mice. Arch Immunol Ther Exp (Warsz). 2016;64:57-63. https://doi.org/10.1007/s00005-015-0358-6

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013; 79:5112-20. https://doi.org/10.1128/AEM.01043-13

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-6. https://doi.org/10.1093/nar/gks1219

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. Peer J. 2016;4:e2584. https://doi.org/10.7717/peerj.2584

Flynn JM, Brown EA, Chain FJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecol Evol. 2015;5:2252-66. ttps://doi.org/10.1002/ece3.1497

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “Allspecies Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643-8. https://doi.org/10.1093/nar/gkt1209

Aguirre-Garrido JF, Montiel-Lugo D, Hernández-Rodríguez C, Torres-Cortes G, Millan V, Toro N. Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central México. Antonie van Leeuwenhoek. 2012;101:891-904. https://doi.org/10.1007/s10482-012-9705-3

Gearhardt AN, Grilo CM, DiLeone RJ, Brownell KD, Potenza MN. Can food be addictive? Public health and policy implications. Addiction. 2011;106:1208-12. https://doi.org/10.1111/j.1360-0443.2010.03301.x

de Jesús Díaz-Reséndiz FJ, Franco-Paredes K, Martínez-Moreno AG, López-Espinoza A, Aguilera-Cervantes VG. Efectos de variables ambientales sobre la ingesta de alimento en ratas: una revisión histórico-conceptual. Univ Psychol. 2009;8:519-32.

Glendinning JI, Hart S, Lee H, Maleh J, Ortiz G, Ryu YS, et al. Low-calorie sweeteners cause only limited metabolic effects in mice. Am J Physiol Regul Integr Comp Physiol. 2020;318:R70-R80. https://doi.org/10.1152/ajpregu.00245.2019

Imberti S, McLain SE, Rhys NH, Bruni F, Ricci MA. Role of water in sucrose, lactose, and sucralose taste: The sweeter, the wetter? ACS Omega. 2019;4:22392-8. https://doi.org/10.1021/acsomega.9b02794

Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32:20-39. https://doi.org/10.1016/j.neubiorev.2007.04.019

Mohammed-Jawad RA, Hutchinson CV, Prados J. Dissociation of place preference and tolerance responses to sucrose using a dopamine antagonist in the planarian. Psychopharmacology (Berl). 2018;235:829-36. https://doi.org/10.1007/s00213-017-4801-8

Ahmad SY, Friel JK, Mackay DS. Effect of sucralose and aspartame on glucose metabolism and gut hormones. Nutr Rev. 2020;78:725-46. https://doi.org/10.1093/nutrit/nuz099

Stamataki NS, Scott C, Elliott R, McKie S, Bosscher D, McLaughlin JT. Stevia beverage consumption prior to lunch reduces appetite and total energy intake without affecting glycemia or attentional bias to food cues: A double-blind randomized controlled trial in healthy adults. J Nutr. 2020;150:1126-34. https://doi.org/10.1093/jn/nxaa038

Figlewicz DP, Ioannou G, Bennett Jay J, Kittleson S, Savard C, Roth CL. Effect of moderate intake of sweeteners on metabolic health in the rat [published correction appears in Physiol Behav. 2010 Apr 19; 99:691]. Physiol Behav. 2009;98:618-24. https://doi.org/10.1016/j.physbeh.2009.09.016

Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middleaged adults in the community (Published correction appears in Circulation. 2007;116:e557). Circulation. 2007;116:480-8. https://doi.org/10.1161/CIRCULATIONAHA.107.689935

Nishikawa S, Yasoshima A, Doi K, Nakayama H, Uetsuka K. Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp Anim. 2007;56:263-72. https://doi.org/10.1538/expanim.56.263

South T, Huang X. Phenotypic variations between a fat-preferring strain and a macronutrient non-preferring strain of mouse. Diabetes Obes Metab. 2006;8:302-10. https://doi.org/10.1111/j.1463-1326.2005.00506.x

Kleinert M, Clemmensen C, Hofmann S, Moore MC, Renner S, Woods SC, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14:140-62. https://doi.org/10.1038/nrendo.2017.161

Rogers PJ, Ferriday D, Irani B, Hei Hoi JK, England CY, Bajwa KK, et al. Sweet satiation: Acute effects of consumption of sweet drinks on appetite for and intake of sweet and nonsweet foods. Appetite. 2020;149:104631. https://doi.org/10.1016/j.appet.2020.104631

Mitsutomi K, Masaki T, Shimasaki T, Gotoh K, Chiba S, Kakuma T, et al. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity. Metabolism. 2014; 63:69-78. https://doi.org/10.1016/j.metabol.2013.09.002

Dalenberg JR, Patel BP, Denis R, Veldhuizen MG, Nakamura Y, Vinke PC, et al. Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metab. 2020;31:493-502.e7. https://doi.org/10.1016/j.cmet.2020.01.014

Grotz VL, Pi-Sunyer X, Porte D Jr, Roberts A, Trout JR. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol. 2017;88:22-33. https://doi.org/10.1016/j.yrtph.2017.05.011

Icaza-Chávez ME. Microbiota intestinal en la salud y la enfermedad. Rev Gastroenterol México. 2013;78:240-8. https://doi.org/10.1016/j.rgmx.2013.04.004

El Aidy S, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol. 2015;32:14-20. https://doi.org/10.1016/j.copbio.2014.09.005

Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859-904. https://doi.org/10.1152/physrev.00045.2009

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015; 21:8787-803. https://doi.org/10.3748/wjg.v21.i29.8787

Ermund A, Schütte A, Johansson ME, Gustafsson JK, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am J Physiol Gastrointest Liver Physiol. 2013;305:G341-7. https://doi.org/10.1152/ajpgi.00046.2013

de Vos WM, de Vos EA. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr Rev. 2012;70:S45-S56. https://doi.org/10.1111/j.1753-4887.2012.00505.x

Konkel JE, Chen W. Balancing acts: The role of TGF-β in the mucosal immune system. Trends Mol Med. 2011;17:668-76. https://doi.org/10.1016/j.molmed.2011.07.002

Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav. 2016;164:488-93. https://doi.org/10.1016/j.physbeh.2016.04.029

Gerasimidis K, Bryden K, Chen X, Papachristou E, Verney A, Roig M, et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur J Nutr. 2020;59:3213-30. https://doi.org/10.1007/s00394-019-02161-8

Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212-15. https://doi.org/10.1038/nature16504

Di Rienzi SC, Britton RA. Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv Nutr. 2020;11:616-29. https://doi.org/10.1093/advances/nmz118

Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012;6:1415-26. https://doi.org/10.1038/ismej.2011.212

Bornemann V, Werness SC, Buslinger L, Schiffman SS. Intestinal metabolism and bioaccumulation of sucralose in adipose tissue in the rat. J Toxicol Environ Health A. 2018;81:913-23. https://doi.org/10.1080/15287394.2018.1502560

Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. J Toxicol Environ Health B Crit Rev. 2013;16:399-451. https://doi.org/10.1080/10937404.2013.842523

Shukla N, Pomarico E, Hecht CJ, Taylor EA, Chergui M, Othon CM. Hydrophobic interactions of sucralose with protein structures. Arch Biochem Biophys. 2018;639:38-43. https://doi.org/10.1016/j.abb.2017.12.013

Qin X. What caused the recent worldwide increase of inflammatory bowel disease: Should sucralose be added as a suspect? Inflamm Bowel Dis. 2011;17:E139. https://doi.org/10.1002/ibd.21823

Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE. 2014; 9:e109841. https://doi.org/10.1371/journal.pone.0109841

Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J Toxicol Environ Health A. 2008;71:1415-29. https://doi.org/10.1080/15287390802328630

Brusick D, Grotz VL, Slesinski R, Kruger CL, Hayes AW. The absence of genotoxicity of sucralose. Food Chem Toxicol. 2010;48:3067-72. https://doi.org/10.1016/j.fct.2010.07.047

Schiffman SS, Abou-Donia MB. Sucralose revisited: Rebuttal of two papers about Splenda safety. Regul Toxicol Pharmacol. 2012;63:505-13. https://doi.org/10.1016/j.yrtph.2012.05.002

Ruiz-Ruiz JC, Moguel-Ordóñez YB, Segura-Campos MR. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci Nutr. 2017;57:2680-90. https://doi.org/10.1080/10408398.2015.1072083

Sanches Lopes SM, Francisco MG, Higashi B, Ribeiro de Almeida RT, Krausová G, Pilau EJ, et al. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydr Polym. 2016;152:718-25. https://doi.org/10.1016/j.carbpol.2016.07.043

Gardana C, Simonetti P, Canzi E, Zanchi R, Pietta P. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem. 2003;51:6618-22. https://doi.org/10.1021/jf0303619

López-Díaz S, Barajas-González JA. Co-inoculation of Glomus sp and Methylobacterium sp to accelerate seed germination, plant growth promotion and induction of systemic resistance in tomato (Lycopersicum esculentum var verome) / Co-inoculación de Glomus sp. Mexican Journal of Biotechnology. 2016;1:96-106.

Murphy EF, Cotter PD, Healy S, Marques TM, O’Sullivan O, Fouhy F, et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635-42. https://doi.org/10.1136/gut.2010.215665

Mirpuri J, Raetz M, Sturge CR, Wilhelm CL, Benson A, Savani RC, et al. Proteo bacteria specific IgA regulates maturation of the intestinal microbiota. Gut Microbes. 2014;5:28-39. https://doi.org/10.4161/gmic.26489

Shin NR, Whon TW, Bae JW. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496-503. https://doi.org/10.1016/j.tibtech.2015.06.011

Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181-6. https://doi.org/10.1038/nature13793

Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE. 2013;8:e71108. https://doi.org/10.1371/journal.pone.0071108

Cómo citar
1.
Escoto JA, Martínez-Carrillo BE, Ramírez-Durán N, Ramírez-Saad H, Aguirre-Garrido JF, Valdés-Ramos R. Consumo crónico de edulcorantes en ratones y su efecto sobre el sistema inmunitario y la microbiota del intestino delgado. biomedica [Internet]. 22 de septiembre de 2021 [citado 23 de octubre de 2021];41(3):504-30. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/5806

Más sobre este tema

Publicado
2021-09-22
Sección
Artículos originales
Crossref Cited-by logo