Variabilidad genética, estrés oxidativo e inflamación en poblaciones colombianas

Dayan Nicole Banguera , Lizeth Giovanna Mejía , Diana Ramírez-Montano , Marcela Perenguez-Verdugo , Andrés Castillo, .

Palabras clave: estrés oxidativo, inflamación, polimorfismode nucleótido simple

Resumen

Introducción. El estrés oxidativo y la inflamación son procesos biológicos estrechamente relacionados con el desarrollo de enfermedades inflamatorias crónicas.
Objetivo. Identificar los componentes de la ascendencia genética y los haplogrupos mitocondriales de individuos provenientes de diferentes regiones de Colombia, y comparar la frecuencia relativa de variantes genéticas involucradas en la respuesta al estrés oxidativo y la inflamación.
Materiales y métodos. Se realizó un análisis de genómica estructural en cinco genomas y 58 exomas de individuos de diversas regiones de Colombia. Se evaluaron los componentes de la ascendencia genética y se determinaron los haplogrupos mitocondriales mediante marcadores moleculares específicos. Se compararon las frecuencias de variantes genéticas relacionadas con el estrés oxidativo y la inflamación.
Resultados. Se identificaron dos grupos principales: uno con un componente de ascendencia predominantemente africano con haplogrupos mitocondriales L1, L2, L3, B2 y D1; y otro, con un componente de ascendencia mayormente europeo y asiático oriental, con haplogrupos mitocondriales H2, U2, B2, A2, C, D1 y D4. Los individuos no afrocolombianos mostraron una mayor frecuencia de las variantes rs2458236 en el gen de la oxidasa dual 1 (DUOX1), rs2536512 en la superóxido dismutasa 3 (SOD3), rs4073 en la interleucina 8 (IL-8), y rs1143627 y rs1143634 en la interleucina 1 beta (IL-1β).
Conclusión. Este estudio reveló diferencias en las frecuencias alélicas variantes moleculares en genes de respuesta al estrés oxidativo y la inflamación, las cuales están asociadas con los componentes principales de ascendencia genética de los individuos evaluados.

Descargas

Los datos de descargas todavía no están disponibles.
  • Dayan Nicole Banguera Laboratorio de Técnicas y Análisis Ómicos (Tao-Lab), Centro de Investigación e Innovación en Bioinformática y Fotónica (CIBioFi), Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia https://orcid.org/0009-0008-9917-7901
  • Lizeth Giovanna Mejía Laboratorio de Técnicas y Análisis Ómicos (Tao-Lab), Centro de Investigación e Innovación en Bioinformática y Fotónica (CIBioFi), Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia https://orcid.org/0000-0001-7182-1365
  • Diana Ramírez-Montano Unidad de Medicina Genómica, Clínica Imbanaco, Cali, Colombia https://orcid.org/0000-0001-9424-7554
  • Marcela Perenguez-Verdugo Unidad de Medicina Genómica, Clínica Imbanaco, Cali, Colombia https://orcid.org/0000-0002-5751-5211
  • Andrés Castillo Laboratorio de Técnicas y Análisis Ómicos (Tao-Lab), Centro de Investigación e Innovación en Bioinformática y Fotónica (CIBioFi), Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia https://orcid.org/0000-0001-9006-6721

Referencias bibliográficas

1. Gompert Z. A continuous correlated beta process model for genetic ancestry in admixed populations. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0151047

2. Wang LJ, Zhang CW, Su SC, Chen HIH, Chiu YC, Lai Z, et al. An ancestry informative marker panel design for individual ancestry estimation of Hispanic population using whole exome sequencing data. BMC Genomics. 2019;20:1-14. https://doi.org/10.1186/s12864-019-6333-6

3. Hellwege JN, Keaton JM, Giri A, Gao X, Vélez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95:1.22.1-1.22.23. https://doi.org/10.1002/cphg.48

4. Chen S, Ghandikota S, Gautam Y, Mersha TB. MI-MAAP: Marker informativeness for multiancestry admixed populations. BMC Bioinformatics. 2020;21:1-14. https://doi.org/10.1186/s12859-020-3462-5

5. Suárez-Pajes E, Díaz-de Usera A, Marcelino-Rodríguez I, Guillen-Guío B, Flores C. Genetic ancestry inference and its application for the genetic mapping of human diseases. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22136962

6. Rosero CY, Corredor M, Mejía L. Polimorfismos en genes implicados en el desarrollo de cáncer gástrico: revisión. Rev Colomb Gastroenterol. 2016;31:391-402.

7. Chande AT, Rowell J, Rishishwar L, Conley AB, Norris ET, Valderrama-Aguirre A, et al. Influence of genetic ancestry and socioeconomic status on type 2 diabetes in the diverse Colombian populations of Chocó and Antioquia. Sci Rep. 2017;7:1-12. https://doi.org/10.1038/s41598-017-17380-4

8. Nediani C, Dinu M. Oxidative stress and inflammation as targets for novel preventive and therapeutic approaches in non-communicable diseases II. Antioxidants (Basel). 2022;11:824. https://doi.org/10.3390/antiox11050824

9. Pahwa R, Goyal A, Jialal I. Chronic inflammation. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Fecha de consulta: 28 de noviembre de 2024. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK493173/

10. Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23137273

11. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822-32. https://doi.org/10.1038/s41591-019-0675-0

12. De Almeida AJPO, De Almeida Rezende MS, Dantas SH, De Lima Silva S, De Oliveira JCPL, De Azevedo F de LAA, et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxid Med Cell Longev. 2020;2020. https://doi.org/10.1155/2020/1954398

13. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, et al. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20:4472. https://doi.org/10.3390/ijms20184472

14. García-Sánchez A, Miranda-Díaz AG, Cardona-Muñoz EG. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid Med Cell Longev. 2020;2020. https://doi.org/10.1155/2020/2082145

15. Prata C, Angeloni C, Maraldi T. Strategies to counteract oxidative stress and inflammation in chronic-degenerative diseases 2.0. Int J Mol Sci. 2024;25:5026. https://doi.org/10.3390/ijms25095026

16. Duffy D. Understanding immune variation for improved translational medicine. Curr Opin Immunol. 2020;65:83-8. https://doi.org/10.1016/j.coi.2020.06.005

17. Fischer J, Long S, Koukoulioti E, Müller T, Fueloep B, Heyne R, et al. Association of common polymorphisms in the interleukin-1 beta gene with hepatocellular carcinoma in Caucasian patients with chronic hepatitis B. Pathogens. 2022;12. https://doi.org/10.3390/pathogens12010054

18. Wang YC, Wang ZH, Yen JH, Shen YC, Shen TC, Chang WS, et al. The contribution of interleukin-8 rs4073 genotypes to triple negative breast cancer risk in Taiwan. Anticáncer Res. 2022;42:3799-806. https://doi.org/10.21873/anticanres.15903

19. Ali Y, Kausar M, Farooq M, Farooqi N, Islam ZU, Khan S, et al. Association of IL-17F rs2397084 (E126G), rs11465553 (V155I), and rs763780 (H161R) variants with rheumatoid arthritis and their effects on the stability of protein. PLoS ONE. 2023;18. https://doi.org/10.1371/journal.pone.0285874

20. Han L, Lee SW, Yoon JH, Park YG, Choi YJ, Nam SW, et al. Association of SOD1 and SOD2 single nucleotide polymorphisms with susceptibility to gastric cancer in a Korean population. APMIS. 2013;121:246-56. https://doi.org/10.1111/j.1600-0463.2012.02963.x

21. Röth E, Marczin N, Balatonyi B, Ghosh S, Kovács V, Alotti N, et al. Effect of a glutathione S-transferase inhibitor on oxidative stress and ischemia-reperfusion-induced apoptotic signaling of cultured cardiomyocytes. Exp Clin Cardiol. 2011;16:92-6.

22. Lare T, Traore L, Traore MS, Zongo SV, Zabre P, Savadogo M, et al. Relationship between the polymorphism of the GSTP1 (rs1695) gene and chronic hepatitis B infection in Ouagadougou, Burkina Faso. J Biosci Med. 2023;11:94-107. https://doi.org/10.4236/jbm.2023.1111009

23. Decharatchakul N, Settasatian C, Settasatian N, Komanasin N, Kukongviriyapan U, Intharaphet P, et al. Association of genetic polymorphisms in APOA5, APOC3, APOE, and LPL with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ. 2019;7. https://doi.org/10.7717/peerj.7407

24. Ashtiwi NM, Sarr D, Rada B. DUOX1 in mammalian disease pathophysiology. J Mol Med (Berl). 2021;99:743. https://doi.org/10.1007/s00109-021-02075-7

25. Chande AT, Nagar SD, Rishishwar L, Mariño-Ramírez L, Medina-Rivas MA, Valderrama-Aguirre AE, et al. The impact of ethnicity and genetic ancestry on disease prevalence and risk in Colombia. Front Genet. 2021;12. https://doi.org/10.3389/fgene.2021.690366

26. Chande AT, Rishishwar L, Ban D, Nagar SD, Conley AB, Rowell J, et al. The phenotypic consequences of genetic divergence between admixed Latin American populations: Antioquia and Chocó, Colombia. Genome Biol Evol. 2020;12:1535-49. https://doi.org/10.1093/gbe/evaa157

27. Departamento Administrativo Nacional de Estadística–DANE. Regiones geográficas. Fecha de consulta: 28 de noviembre de 2024. Disponible en: https://geoportal.dane.gov.co/servicios/atlas-estadistico/src/Tomo_I_Demografico/%E2%80%A2regionesgeogr%C3%A1ficas.html

28. Bushnell B. BBMap: A fast, accurate, splice-aware aligner [Internet]. Berkeley, CA: Lawrence Berkeley National Laboratory; 2014. Report No.: LBNL-7065E. Fecha de consulta: 28 de noviembre de 2024. Disponible en: https://www.osti.gov/servlets/purl/1241166

29. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754-60. https://doi.org/10.1093/bioinformatics/btp324

30. Li H. Aligning sequence reads, clone sequences, and assembly contigs with BWA-MEM. 2013. Fecha de consulta: 28 de noviembre de 2024. Disponible en: http://arxiv.org/abs/1303.3997

31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078. https://doi.org/10.1093/bioinformatics/btp352

32. Goli RC, Chishi KG, Ganguly I, Singh S, Dixit SP, Rathi P, et al. Global and local ancestry and its importance: A review. Curr Genomics. 2024;25:237-60. https://doi.org/10.2174/0113892029298909240426094055

33. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-59. https://doi.org/10.1093/genetics/155.2.945

34. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156-8. https://doi.org/10.1093/bioinformatics/btr330

35. Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, et al. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016;44. https://doi.org/10.1093/nar/gkw233

36. van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009;30:E386-94. https://doi.org/10.1002/humu.20921

37. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812-4. https://doi.org/10.1093/nar/gkg509

38. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013. https://doi.org/10.1002/0471142905.hg0720s76

39. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886-94. https://doi.org/10.1093/nar/gky1016

40. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310-5. https://doi.org/10.1038/ng.2892

41. Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977-85. https://doi.org/10.1093/nar/gkac1010

42. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980-5. https://doi.org/10.1093/nar/gkt1113

43. Oliveira AL, Rodrigues FFO, Santos RE, Aoki T, Rocha MN, Longui CA, et al. GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced breast cancer. Genet Mol Res. 2010;9:1045-53. https://doi.org/10.4238/vol9-2gmr726

44. Zhang BL, Sun T, Zhang BN, Zheng S, Lü N, Xu BH, et al. Polymorphisms of GSTP1 are associated with differences in chemotherapy response and toxicity in breast cancer. Chin Med J. 2011;124.

45. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558:73-9. https://doi.org/10.1038/s41586-018-0175-2

46. Tang H, Wei P, Chang P, Li Y, Yan D, Liu C, et al. Genetic polymorphisms associated with pancreatic cancer survival: A genome-wide association study. Int J Cancer. 2017;141:678-86. https://doi.org/10.1002/ijc.30762

47. Gao JF, Zhang H, Lv J, Wang L, Fan YY. Associations of the IL-17A rs2275913 and IL-17F rs763780 polymorphisms with the risk of digestive system neoplasms: A meta-analysis. Int Immunopharmacol. 2019;67:248-259. https://doi.org/10.1016/j.intimp.2018.12.016

48. Hamajima N, Matsuo K, Saito T, Tajima K, Okuma K, Yamao K, et al. Interleukin 1 polymorphisms, lifestyle factors, and Helicobacter pylori infection. Jpn J Cancer Res. 2001;92:383-9. https://doi.org/10.1111/j.1349-7006.2001.tb01106.x

49. Chakravorty M, Ghosh A, Choudhury A, Santra A, Hembrum J, Roychoudhury S. Interaction between IL-1β gene promoter polymorphisms in determining susceptibility to Helicobacter pylori-associated duodenal ulcer. Hum Mutat. 2006;27:411-9. https://doi.org/10.1002/humu.20299

50. Zhang G, Zhou B, Li S, Yue J, Yang H, Wen Y, et al. Allele-specific induction of IL-1β expression by C/EBPβ and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathog. 2014;10. https://doi.org/10.1371/journal.ppat.1004496

51. Offenbacher S, Jiao Y, Kim SJ, Marchesan J, Moss KL, Jing L, et al. GWAS for Interleukin1β levels in gingival crevicular fluid identifies IL-37 variants in periodontal inflammation. Nat Commun. 2018;9:3686. https://doi.org/10.1038/s41467-018-05940-9

52. Rondón González F, Guillermo B. Estructura genética, ancestralidad y su relación con los estudios en salud humana. Méd UIS. 2013;26:37-43.

53. Urbano L, Portilla EC, Muñoz W, Sierra-Torres CH, Bolaños H, Arboleda Y, et al. Ancestral genetic composition in a population of Southwestern Colombia using autosomal AIMINDELS. Forensic Sci Int Genet Suppl Ser. 2015;5:e189-90.

54. Acosta MA, Blanco-Verea A, Lareu MV, Brion M, Carracedo A. The genetic male component of two South-Western Colombian populations. Forensic Sci Int Genet. 2009;3:e59-61. https://doi.org/10.1016/j.fsigen.2008.06.006

55. Conley AB, Rishishwar L, Norris ET, Valderrama-Aguirre A, Mariño-Ramírez L, MedinaRivas MA, et al. A comparative analysis of genetic ancestry and admixture in the Colombian populations of Chocó and Medellín. G3 (Bethesda). 2017;7:3435-47. https://doi.org/10.1534/g3.117.1118

56. Rishishwar L, Conley AB, Wigington CH, Wang L, Valderrama-Aguirre A, Jordan IK. Ancestry, admixture and fitness in Colombian genomes. Sci Rep. 2015;5:12376. https://doi.org/10.1038/srep12376

57. Torres CAM. Análisis de la variación en las secuencias del ADNmt humano en individuos residentes de la región cundiboyacense. Antistio. 2009;1:33-7.

58. Casas-Vargas A, Romero LM, Rodríguez JV, Usaquén W. Análisis de ADN mitocondrial en una muestra de restos óseos precolombinos de Norte de Santander, Colombia (Área Cultural Chitarera). 2018. Fecha de consulta: 28 de noviembre de 2024. Disponible en: https://repositorio.unal.edu.co/handle/unal/68138

59. Chen YS, Torroni A, Excoffier L, Santachiara-Benerecetti AS, Wallace DC. Analysis of mtDNA variation in African populations reveals the most ancient of all human continentspecific haplogroups. Am J Hum Genet. 1995;57:133.

60. Derenko M, Malyarchuk B, Denisova G, Perkova M, Rogalla U, Grzybowski T, et al. Complete mitochondrial DNA analysis of eastern Eurasian haplogroups rarely found in populations of northern Asia and eastern Europe. PLoS ONE. 2012;7. https://doi.org/10.1371/journal.pone.0032179

61. Yunis JJ, Yunis EJ. Mitochondrial DNA (mtDNA) haplogroups in 1,526 unrelated individuals from 11 departments of Colombia. Genet Mol Biol. 2013;36:329-35. https://doi.org/10.1590/S1415-47572013000300005

62. Wood MR, Sturk-Andreaggi K, Ring JD, Huber N, Bodner M, Crawford MH, et al. Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish Native American from Asian haplotypes. Forensic Sci Int Genet. 2019;43. https://doi.org/10.1016/j.fsigen.2019.102143

63. Keyeux G, Rodas C, Gelvez N, Carter D. Possible migration routes into South America deduced from mitochondrial DNA studies in Colombian Amerindian populations. Hum Biol. 2002;74. https://doi.org/1010.1353/hub.2002.0022

64. Carvajal-Carmona LG, Soto ID, Pineda N, Ortíz-Barrientos D, Duque C, Ospina-Duque J, et al. Strong Amerind/white sex bias and a possible Sephardic contribution among the founders of a population in northwest Colombia. Am J Hum Genet. 2000;67:1287-95. https://doi.org/10.1016/S0002-9297(07)62956-5

65. Rodas C, Gelvez N, Keyeux G. Mitochondrial DNA studies show asymmetrical Amerindian admixture in Afro-Colombian and Mestizo populations. Hum Biol. 2003;75. https://doi.org/10.1353/hub.2003.0026

66. Rondón F, Braga Y, Barreto G. Análisis de la diversidad y el grado de estructura genética presente en poblaciones humanas colombianas a partir del uso de marcadores RFLPs de mtDNA. Rev Asoc Colomb Cienc Biol. 2007;19:94-103.

67. Sun J, Brown TT, Tong W, Samuels D, Tien P, Aissani B, et al. African mitochondrial DNA haplogroup L2 is associated with slower decline of β-cell function and lower incidence of diabetes mellitus in non-Hispanic, Black women living with human immunodeficiency virus. Clin Infect Dis. 2020;71:e218-25. https://doi.org/10.1093/cid/ciaa026

68. Guardado-Estrada M, Medina-Martínez I, Juárez-Torres E, Roman-Bassaure E, Macías L, Alfaro A, et al. The Amerindian mtDNA haplogroup B2 enhances the risk of HPV for cervical cancer: De-regulation of mitochondrial genes may be involved. J Hum Genet. 2012;57:269-76. https://doi.org/10.1038/jhg201217

69. Uribe-Gómez M, Londoño AJ. Desigualdad (es) y pobreza, problemas persistentes en Colombia: reflexiones para una agenda urgente. Forum Rev Dep Cienc Polit. 2023;23:171-89.

70. Lindhorst J, Alexander N, Blignaut J, Rayner B. Differences in hypertension between blacks and whites: An overview. Cardiovasc J Afr. 2007;18:241-7.

71. Hurtado AM, Lambourne CA, James P, Hill K, Cheman K, Baca K. Human rights, biomedical science, and infectious diseases among South American indigenous groups. Annu Rev Anthropol. 2005;34:639-65.

72. Nagar SD, Moreno AM, Norris ET, Rishishwar L, Conley AB, O’Neal KL, et al. Population pharmacogenomics for precision public health in Colombia. Front Genet. 2019;10:241. https://doi.org/10.3389/fgene.2019.00241

73. Furuta T, El-Omar EM, Xiao F, Shirai N, Takashima M, Sugimura H. Interleukin 1β polymorphisms increase risk of hypochlorhydria and atrophic gastritis and reduce risk of duodenal ulcer recurrence in Japan. Gastroenterology. 2002;123:92-105. https://doi.org/10.1053/gast.2002.34156

74. Lee PL, West C, Crain K, Wang L. Genetic polymorphisms and susceptibility to lung disease. J Negat Results Biomed. 2006;5. https://doi.org/10.1186/1477-5751-5-5

75. Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol. 2021;48. https://doi.org/10.1016/j.redox.2021.102159

76. Morris CR, Habibovic A, Dustin CM, Schiffers C, Lin MC, Ather JL, et al. Macrophageintrinsic DUOX1 contributes to type 2 inflammation and mucus metaplasia during allergic airway disease. Mucosal Immunol. 2022;15:977-89. https://doi.org/10.1038/s41385-022-00530-x

77. Monari M, Trinchero A, Calabrese C, Cattani O, Serrazanetti GP, Foschi J, et al. Superoxide dismutase in gastric adenocarcinoma: Is it a clinical biomarker in the development of cancer? Biomarkers. 2006;11. https://doi.org/10.1080/13547500600899134

78. Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: A liquid biopsy biomarker? Clin Chem Lab Med. 2018;56:702-17. https://doi.org/10.1515/cclm-2017-0703

79. Usategui-Martín R, Corral E, Alonso M, Calero-Paniagua I, Carranco-Medina TE, QuesadaMoreno A, et al. Estudio de las deleciones de los genes GSTM1 y GSTT1 y del polimorfismo Ile105Val del gen GSTP1 en pacientes con enfermedad ósea de Paget. Rev Osteoporos Metab Miner. 2014;6:83-8.

80. Cui J, Li G, Yin J, Li L, Tan Y, Wei H, et al. GSTP1 and cancer: Expression, methylation, polymorphisms, and signaling (Review). Int J Oncol. 2020;56. https://doi.org/10.3892/ijo.2020.4979

81. Xiao J, Wang Y, Wang Z, Zhang Y, Li Y, Xu C, et al. The relevance analysis of GSTP1 rs1695 and lung cancer in the Chinese Han population. Int J Biol Markers. 2021;36. https://doi.org/10.1177/17246008211039236

82. Farmohammadi A, Arab-Yarmohammadi V, Ramzanpour R. Association analysis of rs1695 and rs1138272 variations in GSTP1 gene and breast cancer susceptibility. Asian Pac J Cancer Prev. 2020;21. https://doi.org/10.31557/APJCP.2020.21.4.1167

83. Ma J, Zhu SL, Liu Y, Huang XY, Su DK. GSTP1 polymorphism predicts treatment outcome and toxicities for breast cancer. Oncotarget. 2017;8:72939-49. https://doi.org/10.18632/oncotarget.18513

84. Mikkola T, Almahmoudi R, Salo T, Al-Samadi A. Variable roles of interleukin-17F in different cancers. BMC Cancer. 2022;22:54. https://doi.org/10.1186/s12885-021-08969-0

85. Gao JF, Zhang H, Lv J, Wang L, Fan YY. Associations of the IL-17A rs2275913 and IL-17F rs763780 polymorphisms with the risk of digestive system neoplasms: A meta-analysis. Int Immunopharmacol. 2019;67:248-59. https://doi.org/10.1016/j.intimp.2018.12.016

86. Xiang Z, Hao Z, Cui P, Lin L, Chen M, Chen PM. Association between interleukin-17F rs763780 polymorphism and psoriasis risk: A meta-analysis. Indian J Dermatol Venereol Leprol. 2022;88:150-5. https://doi.org/10.25259/IJDVL_1401_20

87. Chang SH, Dong C. IL-17F: regulation, signaling, and function in inflammation. Cytokine. 2009;46:7:154-65.

88. Rolandelli A, Pellegrini JM, Hernández Del Pino RE, Tateosian NL, Amiano NO, Morelli MP, et al. The non-synonymous rs763780 single-nucleotide polymorphism in IL-17F gene is associated with susceptibility to tuberculosis and advanced disease severity in Argentina. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.02248

89. Talepoor Ag, Pordel S, Khosropanah S, Doroudchi M. IL-17F rs763780 polymorphism is associated with unhealthy BMI and diabetes mellitus in patients with acute myocardial infarction. Hum Gene. 2022;34. https://doi.org/10.1016/j.humgen.2022.201089

90. Alpízar-Alpízar W, Une C, Sierra R. La inflamación y su papel en el desarrollo del cáncer gástrico. Acta Méd Costarric. 2009;51:76-81.

91. Brat DJ, Bellail AC, van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncol. 2005;7:122-33. https://doi.org/10.1215/S1152851704001061

92. Wang Z, Hou Y, Yao Z, Zhan Y, Chen W, Liu Y. Expressivity of interleukin-8 and gastric cancer prognosis susceptibility: A systematic review and meta-analysis. Dose-Response. 2021;19:15593258211037127. https://doi.org/10.1177/15593258211037127

93. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404:398-402. https://doi.org/10.1038/35006081

94. Moran Y, Cañas M, Grimán P, Camargo M, Rivero MB, Chiurillo MA. Distribución de polimorfismos genéticos de interleuquina-1 en individuos de la región centroccidental de Venezuela. Acta Biol Colomb. 2009;14:185-94.

95. Wang L, Zhao W, Hong J, Niu F, Li J, Zhang S, et al. Association between IL-1β gene and cervical cancer susceptibility in Chinese Uygur population: A case-control study. Mol Genet Genomic Med. 2019;7:e779. https://doi.org/10.1002/mgg3.779

96. Jafrin S, Aziz MA, Islam MS. Role of IL-1β rs1143634 (+3954C>T) polymorphism in cancer risk: An updated meta-analysis and trial sequential analysis. J Int Med Res. 2021;49. https://doi.org/10.1177/03000605211060144

97. Ohyauchi M, Imatani A, Yonechi M, Asano N, Miura A, Iijima K, et al. The polymorphism interleukin-8 -251 A/T influences the susceptibility of Helicobacter pylori-related gastric diseases in the Japanese population. Gut. 2005;54:330-5. https://doi.org/10.1136/gut.2003.033050

98. Pérez-Pérez GI, Garza-González E, Portal C, Olivares AZ. Role of cytokine polymorphisms in the risk of distal gastric cancer development. Cancer Epidemiol Biomarkers Prev. 2005;14:1869-73. https://doi.org/10.1158/1055-9965.EPI-04-0889

99. Taguchi A, Ohmiya N, Shirai K, Mabuchi N, Itoh A, Hirooka Y, et al. Interleukin-8 promoter polymorphism increases the risk of atrophic gastritis and gastric cancer in Japan. Cancer Epidemiol Biomarkers Prev. 2005;14:2487-93. https://doi.org/10.1158/1055-9965.EPI-05-0326

Cómo citar
1.
Banguera DN, Mejía LG, Ramírez-Montano D, Perenguez-Verdugo M, Castillo A. Variabilidad genética, estrés oxidativo e inflamación en poblaciones colombianas. Biomed. [Internet]. 30 de mayo de 2025 [citado 20 de junio de 2025];45(2):244-66. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/7220

Algunos artículos similares:

Publicado
2025-05-30
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
Crossref Cited-by logo
QR Code

Datos de los fondos