Variantes de genes candidatos y su interacción con el hábito de fumar sobre el riesgo de síndrome coronario agudo

Liliana Franco, Natalia Gallego, Cristian Velarde  , Diana Valencia  , Juan Pablo Pérez-Bedoya, Kelly Betancur, Kelly Marisancen, Paola Parra, Santiago Carvalho, Luisa Parra, Evert Jiménez, Carlos Martínez, Clara Saldarriaga, Juan Carlos Arango, Nathalia González-Jaramillo, Jenny García, Ana Valencia , .

Palabras clave: Síndrome coronario agudo, estudio de asociación genética, polimorfismo genético, interacción gen-ambiente, fumar, estudios de casos y controles

Resumen

Introducción. Múltiples factores genéticos y ambientales interactúan en el desarrollo del síndrome coronario agudo; el tabaquismo es uno de los factores ambientales que puede alterar los genes implicados en las vías metabólicas asociadas con esta condición.
Objetivo. Investigar la asociación de variantes genéticas relacionadas con la inflamación, el metabolismo de los lípidos y la agregación plaquetaria, con el riesgo de desarrollar síndrome coronario agudo en personas del nordeste colombiano. Además, evaluar los efectos de la interacción entre los polimorfismos y el hábito de fumar.
Materiales and métodos. Se analizaron los datos de 330 casos de síndrome coronario agudo y 430 controles. Se evaluó la asociación de 20 polimorfismos con el riesgo de padecer un síndrome coronario agudo mediante regresión logística ajustada por factores de confusión. Se calcularon los términos de la interacción entre las variantes genéticas y el tabaquismo en asociación con el síndrome coronario agudo. Estas asociaciones se evaluaron por separado para fumadores y para no fumadores.
Resultados. Se encontraron dos variantes asociadas con el síndrome coronario agudo: rs10455872 del gen LPA (OR = 2,69; IC 95%: 1,61-4,49) y rs429358 del gen APOE (OR = 1,93; IC 95%: 1,30-2,87). Se identificaron interacciones entre las variantes genéticas y el tabaquismo para rs6511720 en LDLR (p = 0,04) y rs2227631 en SERPINE1 (p = 0,02). Se observaron efectos estadísticos significativos entre los no fumadores (rs6511720: OR = 0,40; IC 95%: 0,19-0,88 y rs2227631: OR = 0,69; IC 95%: 0,48-1,00), pero no en los fumadores (rs6511720: OR = 1,28; IC 95%: 0,66-2,46 y rs2227631 OR = 1,30; IC 95%: 0,91-1,87).
Conclusiones. Las variantes genéticas de LPA y APOE encontradas en una población del nordeste de Colombia están asociadas con un alto riesgo de desarrollar un síndrome coronario agudo. Los efectos de rs6511720 en LDLR y rs2227631 en SERPINE1 varían entre fumadores y no fumadores, y son estadísticamente significativos en este último grupo. Estos resultados son útiles para el tamizaje temprano del riesgo de padecer el síndrome coronario agudo, principalmente en individuos cuyos factores de riesgo convencionales no son claros.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

1. Di Cesare M, McGhie DV, Perel P, Mwangi J, Taylor S, Pervan B, et al. The heart of the world. Glob Heart. 2024;19. https://doi.org/10.5334/gh.1288

2. Organización Panamericana de la Salud. La carga de enfermedades cardiovasculares. Accessed on: June 26 2024. Available from: https://www.paho.org/es/enlace/cargaenfermedades-cardiovasculares

3. Arroyo-Quiroz C, Barrientos-Gutiérrez T, O’Flaherty M, Guzmán-Castillo M, Palacio-Mejía L, Osorio-Saldarriaga E, et al. Coronary heart disease mortality is decreasing in Argentina, and Colombia, but keeps increasing in Mexico: A time trend study. BMC Public Health. 2020;20:162. https://doi.org/10.1186/s12889-020-8297-5

4. Musunuru K, Kathiresan S. Genetics of common, complex coronary artery disease. Cell. 2019;177:132-45. https://doi.org/10.1016/j.cell.2019.02.015

5. Anand SS, Xie C, Paré G, Montpetit A, Rangarajan S, McQueen MJ, et al. Genetic variants associated with myocardial infarction risk factors in over 8,000 individuals from five ethnic groups the INTERHEART genetics study. Circ Cardiovasc Genet. 2009;2:16-25. https://doi.org/10.1161/CIRCGENETICS.108.813709

6. Garg PR, Saraswathy KN, Kalla AK, Sinha E, Ghosh PK. Pro-inflammatory cytokine gene polymorphisms and threat for coronary heart disease in a North Indian Agrawal population. Gene. 2013;514:69-74. https://doi.org/10.1016/j.gene.2012.10.011

7. Benes LB, Brummel K, Roth M, Shen L, Davidson MH. The role of genetics in cardiovascular risk reduction: Findings from a single lipid clinic and review of the literature. Cardiovasc Revasc Med. 2020;21:200-4. https://doi.org/10.1016/j.carrev.2019.04.006

8. Strisciuglio T, Franco D, Di Gioia G, De Biase C, Morisco C, Trimarco B, et al. Impact of genetic polymorphisms on platelet function and response to anti-platelet drugs. Cardiovasc Diagn Ther. 2018;8:610-20. https://doi.org/10.21037/cdt.2018.05.06

9. Beaney KE, Cooper JA, Drenos F, Humphries SE. Assessment of the clinical utility of adding common single nucleotide polymorphism genetic scores to classical risk factor algorithms in coronary heart disease risk prediction in UK men. Clin Chem Lab Med. 2017;55:1605-13. https://doi.org/10.1515/cclm-2016-0984

10. Ishida M, Sakai C, Kobayashi Y, Ishida T. Cigarette smoking and atherosclerotic cardiovascular disease. J Atheroscler Thromb. 2024;31:189-200. https://doi.org/10.5551/jat.RV22015

11. Ma B, Chen Y, Wang X, Zhang R, Niu S, Ni L, et al. Cigarette smoke exposure impairs lipid metabolism by decreasing low-density lipoprotein receptor expression in hepatocytes. Lipids Health Dis. 2020;19:88. https://doi.org/10.1186/s12944-020-01276-w

12. Morange PE, Saut N, Alessi MC, Yudkin JS, Margaglione M, Di Minno G, et al. Association of plasminogen activator inhibitor (PAI)-1 (SERPINE1) SNPs with myocardial infarction, plasma PAI-1, and metabolic parameters: The HIFMECH study. Arterioscler Thromb Vasc Biol. 2007;27:2250-7. https://doi.org/10.1161/ATVBAHA.107.149468

13. Gustavsson J, Mehlig K, Leander K, Strandhagen E, Björck L, Thelle DS, et al. Interaction of apolipoprotein E genotype with smoking and physical inactivity on coronary heart disease risk in men and women. Atherosclerosis. 2012;220:486-92. https://doi.org/10.1016/j.atherosclerosis.2011.10.011

14. Jofre-Monseny L, Minihane A-M, Rimbach G. Impact of apoE genotype on oxidative stress, inflammation, and disease risk. Mol Nutr Food Res. 2008;52:131-45. https://doi.org/10.1002/mnfr.200700322

15. Hartiala JA, Hilser JR, Biswas S, Lusis AJ, Allayee H. Gene–environment interactions for cardiovascular disease. Curr Atheroscler Rep. 2021;23. https://doi.org/10.1007/s11883-021-00974-9

16. Adhikari K, Chacón-Duque JC, Mendoza-Revilla J, Fuentes-Guajardo M, Ruiz-Linares A. The genetic diversity of the Americas. Annu Rev Genomics Hum Genet. 2017;18:277-96. https://doi.org/10.1146/annurev-genom-083115-022331

17. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60:1581-98. https://doi.org/10.1016/j.jacc.2012.08.001

18. Arango JC, Valencia A, Páez A, Montoya N, Palacio C, Arbeláez MP, et al. Prevalencia de variantes en el gen de la apolipoproteína E (APOE) en adultos de la población general del área urbana de Medellín (Antioquia). Rev Colomb Psiquiatr. 2014;43:80-6.

19. Saleheen D, Zhao W, Young R, Nelson CP, Ho W, Ferguson JF, et al. Loss of cardioprotective effects at the ADAMTS7 locus as a result of gene-smoking interactions. Circulation. 2017;135:2336-53. https://doi.org/10.1161/CIRCULATIONAHA.116.022069

20. Riera MA, Rojas ME, Zapata PD. Protocolo de extracción de DNA por salting-out para pequeños volúmenes de sangre. Rev Cienc Tecnol. 2010;14:4-7.

21. Ensembl. Ensembl genome browser. Accessed on: June 18 2024. Available from: https://www.ensembl.org/index.html

22. Pritchard Lab. Structure 2.3.4. Accessed on: June 18 2024. Available from: https://web.stanford.edu/group/pritchardlab/structure_software/release_versions/v2.3.4/html/structure.html

23. Carvajal-Carmona LG, Ophoff R, Service S, Hartiala J, Molina J, León P, et al. Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica. Hum Genet. 2003;112:534-41. https://doi.org/10.1007/S00439-002-0899-8

24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-75. https://doi.org/10.1086/519795

25. Cardoso-Saldaña G, Fragoso JM, Lale-Farjat S, Torres-Tamayo M, Posadas-Romero C, Vargas-Alarcón G, et al. The rs10455872-G allele of the LPA gene is associated with high lipoprotein(a) levels and increased aortic valve calcium in a Mexican adult population. Genet Mol Biol. 2019;42:519-25. https://doi.org/10.1590/1678-4685-GMB-2017-0371

26. Enas EA, Varkey B, Dharmarajan TS, Pare G, Bahl VK. Lipoprotein (a): An independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J. 2019;71:99-112. https://doi.org/10.1016/j.ihj.2019.03.004

27. Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: Insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57:1953-75. https://doi.org/10.1194/jlr.R071233

28. Ansari WM, Humphries SE, Naveed AK, Khan OJ, Khan DA, Khattak EH. Effect of coronary artery disease risk SNPs on serum cytokine levels and cytokine imbalance in premature coronary artery disease. Cytokine. 2019;122:154060.

https://doi.org/10.1016/j.cyto.2017.05.013

29. Tanguturi P, Pullareddy B, Kumar PS, Murthy DK. Association between apolipoprotein E gene polymorphism and myocardial infarction. Biochem Genet. 2013;51:398-405. https://doi.org/10.1007/s10528-013-9572-2

30. Karjalainen JP, Mononen N, Hutri-Kähönen N, Lehtimäki M, Juonala M, Ala-Korpela M, et al. The effect of apolipoprotein E polymorphism on serum metabolome – A population-based 10-year follow-up study. Sci Rep. 2019;9:458. https://doi.org/10.1038/s41598-018-36450-9

31. Fairoozy RH, White J, Palmen J, Kalea AZ, Humphries SE. Identification of the functional variant(s) that explain the low-density lipoprotein receptor (LDLR) GWAS SNP rs6511720 association with lower LDL-C and risk of CHD. PLoS One. 2016;11:e0167676. https://doi.org/10.1371/journal.pone.0167676

32. García-González IJ, Valle Y, Sandoval-Pinto E, Valdés-Alvarado E, Valdez-Haro A, Francisco Muñoz-Valle J, et al. The -844 G>A PAI-1 polymorphism is associated with acute coronary syndrome in Mexican population. Dis Markers. 2015;2015:1-7. https://doi.org/10.1155/2015/460974

33. Pavlov M, Ćelap I. Plasminogen activator inhibitor 1 in acute coronary syndromes. Clin Chim Acta. 2019;491:52-8. https://doi.org/10.1016/j.cca.2019.01.013

34. Kathiresan S, Gabriel SB, Yang Q, Lochner AL, Larson MG, Levy D, et al. Comprehensive survey of common genetic variation at the plasminogen activator inhibitor-1 locus and relations to circulating plasminogen activator inhibitor-1 levels. Circulation. 2005;112:1728-35. https://doi.org/10.1161/CIRCULATIONAHA.105.547836

35. Eriksson P, Kallin B, Van’t Hooft FM, Bavenholm P, Hamsten A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA. 1995;92:1851-5. https://doi.org/10.1073/pnas.92.6.1851

36. Huang J, Sabater-Lleal M, Asselbergs FW, Tregouet D, Shin SY, Ding J, et al. Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood. 2012;120:4873-81. https://doi.org/10.1182/blood-2012-06-436188

37. Benowitz NL. Cigarette smoking and cardiovascular disease: Pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46:91-111. https://doi.org/10.1016/S0033-0620(03)00087-2

38. Tsai HJ, Choudhry S, Naqvi M, Rodriguez-Cintron W, Burchard EG, Ziv E. Comparison of three methods to estimate genetic ancestry and control for stratification in genetic association studies among admixed populations. Hum Genet. 2005;118:424-33. https://doi.org/10.1007/s00439-005-0067-z

39. Campbell DD, Parra M V, Duque C, Gallego N, Franco L, Tandon A, et al. Amerind ancestry, socioeconomic status, and the genetics of type 2 diabetes in a Colombian population. PLoS One. 2012;7:e33570. https://doi.org/10.1371/journal.pone.0033570

Cómo citar
1.
Franco L, Gallego N, Velarde  C, Valencia  D, Pérez-Bedoya JP, Betancur K, et al. Variantes de genes candidatos y su interacción con el hábito de fumar sobre el riesgo de síndrome coronario agudo. Biomed. [Internet]. 28 de marzo de 2025 [citado 21 de abril de 2025];45(1):107-1. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/7379

Algunos artículos similares:

Publicado
2025-03-28
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
Crossref Cited-by logo
QR Code

Datos de los fondos