Interacciones genotóxicas de mutágenos en mezclas binarias mediante ensayo cometa alcalino en linfocitos humanos

Isabel C. Ortiz, Carlos A. Peláez, Luz Yaneth Orozco, Margarita Zuleta, .

Resumen

Introducción. Los mutágenos contenidos en mezclas complejas presentan interacciones desinergismo, aditivas o antagónicas. Se han desarrollado enfoques experimentales que permitandilucidar el responsable de las interacciones en la mezcla.

Objetivo. Desarrollar un diseño experimental para comprender los procesos que se llevan a caboentre los compuestos presentes en las mezclas complejas.

Materiales y métodos. Se expusieron linfocitos humanos a mezclas binarias de mutágenos B[a]P,DMBA, Trp-P-1 y MX durante una hora, con activación metabólica y sin ella. La viabilidad se evaluócon azul de tripano y, la genotoxicidad, con cometa alcalino.

Resultados. Ningún hidrocarburo tuvo efecto con furanona. Con S9 y sin él, se observó que sepresentaban interacciones tóxicas entre hidrocarburos. Se observó sinergismo sin S9 entre B[a]P yTrp-P-1 y, con actividad metabólica, entre DMBA y Trp-P-1. Sin S9 se observó interacción antagónicaentre Trp-P-1 y DMBA y, con S9, entre Trp-P-1 y MX y entre MX y DMBA. Se observó un incrementodependiente de la dosis en la longitud de la cola. Hubo daño genotóxico medio y aumento de lascélulas dañadas. Para todas las mezclas se pudo determinar la concentración mínima en la que seobservaban efectos adversos y solo para algunas se determinó la concentración máxima en la cual nose observaron efectos adversos.

Conclusión. Se hace un aporte para comprender los procesos que ocurren cuando en una mezclahay presentes, al menos, dos mutágenos y se valida un modelo de análisis que permite dilucidar elcompuesto que tiene efecto sobre otro. También, se demostró que según el tipo de compuestos en lamezcla, se tendrá o no un umbral de riesgo.

 

doi: http://dx.doi.org/10.7705/biomedica.v32i3.739

 

Descargas

La descarga de datos todavía no está disponible.
  • Isabel C. Ortiz Grupo de Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín, Colombia
  • Carlos A. Peláez Grupo Interdisciplinario de Estudios Moleculares, Universidad de Antioquia, Medellín, Colombia
  • Luz Yaneth Orozco Grupo de Gestión y Modelación Ambiental, Universidad de Antioquia, Medellín, Colombia
  • Margarita Zuleta

Citas

National Research Council. Complex mixtures: Method for in vivo toxicity testing. Washington, D.C.: National Academy Press; 1988.

Carpenter D, Arcaro K, Spink D. Understanding the human health effects of chemical mixtures. Environ Health Perspect. 2002;110:25-37.

Poirier MC, Beland FA. DNA adducts measurements and tumor incidence during chronic carcinogen exposure in animal models: Implications for DNA adduct-based human cancer risk assessment. Chem Res Toxicol. 1992;5:749-55. http://dx.doi.org/10.1021/tx00030a003

Kakizoe T. Chemoprevention of cancer – focusing on clinical trials. Jpn J Clin Oncol. 2003;33:421-42.

Williams GM, Weisburger JH. Interactions of chemical carcinogens: Environmental mutagens and carcinogens. New York: A.R. Liss Publ; 1988. p. 288-94. http://dx.doi.org/10.1093/jjco/hyg090

Deng ChZ, Fons MP, Rosenblatt J, El-Zein RA, Abdel-Rahman SZ, Albrecht T. Nickel potentiates the genotoxic effect of benzo(a)pyrene in Chinese hamster lung V79 cells. Environ Mol Mutagen. 2006;47:150-61. http://dx.doi.org/10.1002/em.20179

Majer BJ, Hofer E, Cavin C, Lhoste E, Uhl M, Glatt HR, et al. Coffee diterpenes prevent the genotoxic effects of 2-amino-1meyhyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and N-nitrosodimethylamine in a human derived liver cell line (Hep G2). Food Chem Toxicol. 2005;43:433-41. http://dx.doi.org/10.1016/j.fct.2004.11.009

Ogawa S, Hirayama T, Nohara M, Tokuda M, Hirai K, Fukui S. The effect of quercetin on the mutagenicity of 2-acetylaminofluorene and benzo(a)pyrene in Salmonella typhimurium strains. Mutat Res. 1985;142:103-7. http://dx.doi.org/10.1016/0165-7992(85)90048-X

Wakabayashi K, Totsuka Y, Fukutome K, Oguri A, Ushiyama H, Sugimura T. Human exposure to mutagenic/carcinogenic heterocyclic amines and comutagenic β-carbolines. Mutat Res. 1997;376:253-9. http://dx.doi.org/10.1016/S0027-5107(97)00050-X

Hasegawa R, Shirai T, Hakoi K, Takaba K, Iwasahi S, Yoshida T, et al. Synergistic enhancement of glutatione Stransferase placental from positive hepatic foci development

in diethylnitrosamine treated rats by combined administration of live heterociclic amines at lows doses. Jpn J Cancer Res. 1991;82:1378-84.

Feng ZC, Hu W, Rom WN, Costa M, Tang M. Chromium exposure enhance polyciclic aromatic hydrocarbone ADN binding at the P53 gene in human lung cells. Carcinogenesis. 2003;24:771-8. http://dx.doi.org/10.1093/carcin/bgg012

Flessel P, Liu KS, Paz MK, Waldman J, Girman J. Unintentional carbon monoxide deaths in California from residential and other nonvehicular sources. Environ Health. 1988;55:375-81.

Haugen DA, Meyrick JP. Mixtures of polycyclic aromatic compounds inhibit mutagenesis en the Salmonella/microsome assay by inhibition of metabolic activation. Mutat Res. 1983;116:257-69. http://dx.doi.org/10.1016/0165-1218(83) 90063-0

Hermann M. Synergistic effects of individual polycyclic aromatic hydrocarbons on the mutagenicity of their mixture. Mutat Res. 1981;90:399-409. http://dx.doi.org/10.1016/0165-1218(81)90062-8

Fernández-Sánchez JF, Segura-Carretero A, Cruces-Blanco C, Fernández-Gutiérrez A. Highly sensitive and selective fluorescente optosensor to detect and quantify benzo(a)pyrene in water simples. Anal Chim Acta. 2004;506:1-7. http://dx.doi.org/10.1016/j.aca.2003.11.002

Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the

ambient air. Environ Health Perspect. 2002;110:451-88. http://dx.doi.org/10.1289/ehp.02110s3451

International Agency for Research on Cancer. Polynuclear aromatic compounds: Chemical, environmental experimental data. Lyon: IARC; 1983.

Hiatt HH, Watson JD, Winsten JA. Origins of human cancer. New York: Cold Spring Harbor Laboratory Press; 1997. p. 1561-77.

Orozco LY, López C, Naranjo LC, Zuleta M. DNA damage and identification of mutagenic heterocyclic amines in municipal wastewater which contaminate water purification plants. Environ Mol Mutagen. 2003;41:196.

Onstad GD, Weinberg H. Evaluation of the stability and analysis of halogenated furanones in disinfected drinking waters. Anal Chim Acta. 2005;534:281-92.

Environmental Protection Agency. Guidelines for mutagenicity risk assessment. Washington, D.C.: Risk Assessment Forum; 1986.

Dearfield KL, Cimino M, Mc Carroll NE, Mauer I, Valcovic LR. Genotoxicity risk assessment: A proposed classification strategy. Mutat Res. 2002;521:121-35. http://dx.doi.org/10.1016/S1383-5718(02)00236-X

Dearfield KL, Moore MM. Use of genetic toxicology information for risk assessment. Environ Mol Mutagen. 2005;46:236-45. http://dx.doi.org/10.1002/em.20176

Ohe T, Watanabe T, Wakabayashi K. Mutagens in surface waters: A review. Mutat Res. 2004;567:109-49. http://dx.doi.org/10.1016/j.mrrev.2004.08.003

Torres A, Pereira P, Vaz JA, Ferrao VM. Mutagenicity assessment in a river basin influenced by agricultural, urban and industrial sources. Ecotoxicol Environ Saf. 2009;72:2058-65. http://dx.doi.org/10.1016/j.ecoenv.2009.08.006

Park SY, Choi J. Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environ Int. 2007;33:817-22. http://dx.doi.org/10.1016/j.envint.2007.03.014

Bertino J. Encyclopedy of cancer. 2nd edition. New York: Academic Press; 2002. p. 433-47.

ICH Expert Working Group. S2A: Guidance on specific aspects of regulatory genotoxicity tests for pharmaceuticals. Canada: Minister of Public Works and Government Services;

National Research Council. Environmental tobacco smoke: Measuring exposures and assessing health effects. Washington: National Academy Press; 1986. p. 54-62.

Kohji Y, Kusakabe H, Tanaka N. Comparative studies of MCL-5 cells and human limphocytes for detecting indirectacting clastogens. Mutat Res. 1998;412:55-61. http://dx.doi.

org/10.1016/S1383-5718(97)00170-8

Jansson K, Mäki-Paakkanen J, Vaittinen SL, Vartiainen T, Komulainen H, Tuomisto J. Cytogenetic effects of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in rat peripheral lymphocytes in vitro and in vivo. Mutat Res. 1993;229:25-8. http://dx.doi.org/10.1016/0165-1218(93)90115-T

Pitarque M, Vaglenov A, Nosko M, Hirvonen A, Norppa H, Creus A, et al. Evaluation of DNA damage by the Comet assay in shoe workers exposed to toluene and other organic solvents. Mutat Res. 1999;441:115-27. http://dx.doi.org/10.1016/S1383-5718(99)00042-X

Platel A, Gervais V, Sajot N, Nesslany F, Marzin D, Claude N. Study of gene expression profiles in TK6 human cells exposed to DNA-oxidizing agents. Mutat Res. 2010;689:21-

http://dx.doi.org/10.1016/j.mrfmmm.2010.04.004

Dhawan A, Bajpayee M, Pandey AK, Parmar D. Protocol for the single cell gel electrophoresis: Comet assay for rapid genotoxicity assessment. Lucknow, India: Industrial Toxicology Research Centre; 2009.

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184-91. http://dx.doi.org/10.1016/0014-4827(88)90265-0

Ejchart A, Sadlej-Sosnowska N. Statistical evaluation and comparison of comet assay results. Mutat Res. 2003;534:85-92. http://dx.doi.org/10.1016/S1383-5718(02)00250-4

Brink A, Schulz B, Kobras K, Lutz WK, Stoppe H. Time-dependent effects of sodium arsenite on DNA breakage and apoptosis observed in the comet assay. Mutat Res. 2006;603:121-8. http://dx.doi.org/10.1016/j.mrgentox.2005.10.015

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi A, et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen.2000;35:206-21. http://dx.doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AIDEM8>3.0.CO;2-J

Trisnawaty A, Vian L, Sabatier R, Cano JP. In vitro detection of indirect-acting genotoxins in the comet assay using Hep G2 cells. Mutat Res. 2000;468:227-34. http://dx.doi.org/10.1016/S1383-5718(00)00052-8

Uhl M, Helma C, Knasmüller S. Single cell gel electrophoresis assays with human-derived hepatoma (HepG2) cells. Mutat Res. 1999;17:441:215-24. http://dx.doi.org/10.1016/S1383-5718(99)00050-9

Uhl M, Christoph H, Siegfried K. Single-cell gel electrophoresis assays with human-derived hepatoma (Hep G2) cells. Mutat Res. 1999;441:215-24. http://dx.doi.org/10.1016/S1383-5718(99)00050-9

Ishiguro Y, LaLonde RT, Dence CW, Santodonato J. Mutagenicity of chlorine-substituted furanones and their inactivation by reaction with nucleophiles. Environ Toxicol Chem. 1987;6:935-46. http://dx.doi.org/10.1002/etc.5620061205

Meier JR, Knohl RB. Mutagenic and clastogenic properties of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone; a potent bacterial mutagen in drinking water. Environ Mol

Mutagen. 1987;10:411-24.

Tikkanen L, Kronberg L. Genotoxic effects of various chlorinated butenoic acids identified in chlorinated drinking water. Mutat Res. 1990;240:109-16. http://dx.doi.org/10.1016/0165-1218(90)90014-S

LaLonde RT, Cook GP, Perakyla H, Dence CW, Babish JG. Salmonella typhimurium (TA 100) mutagenicity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone and its open- and closed ring analogs. Environ Mol Mutagen. 1991;17:40-8. http://dx.doi.org/10.1002/em.2850170107

Kinae N, Sugiyama C, Nasuda MY, Goto K, Tokumoto K, Furugori M, et al. Seasonal variation and stability of chlorinated organic mutagens in drinking water. Water Sci Technol. 1992;25:333-40.

Jenkins GJ, Zair Z, Johnson GE, Doak SH. Genotoxic thresholds, DNA repair, and susceptibility in human populations. Toxicology. 2010;278:305-10. http://dx.doi.org/10.1016/j.tox.2009.11.016

Cherng SH, Lin P, Yang JL, Hsu SL, Lee H. Benzo[g,h,i] perylene synergistically transactivates benzo[a]pyreneinduced CYP1A1 gene expression by aryl hydrocarbon receptor pathway. Toxicol Appl Pharmacol. 2001;170:63-8.http://dx.doi.org/10.1006/taap.2000.9082

Hestermann E, Stegeman J, Hahn M. Relationships among the cell cycle, cell proliferation, and ary hydrocarbon receptor expression in PLHC-1 cells. Aquat Toxicol. 2002;58:201-13.http://dx.doi.org/10.1016/S0166-445X(01)00229-6

Pottenger L, Gollapudi B. A case for a new paradigm in genetic toxicology testing. Mutat Res. 2009;678:148-51.http://dx.doi.org/10.1016/j.mrgentox.2009.07.003

Spink D, Spink B, Cao J, DePasquale J, Pentecost B, Fasco M, et al. Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis. 1998;19:291-8. http://dx.doi.org/10.1093/carcin/19.2.291

Ioannides C, Parke DV. The cytochrome P450 I gene family of microsomal hemoproteins and their role in the metabolic activation of chemicals. Drug Metab Rev. 1990;22:1-85.

http://dx.doi.org/10.3109/03602539008991444

Hahn M. Aryl hydrocarbon receptors: Diversity and evolution. Chem Biol Interact. 2002;141:131-60. http://dx.doi.org/10.1016/S0009-2797(02)00070-4

Kirsch-Volders M, Gonzalez L, Carmichael P, Kirkland D. Risk assessment of genotoxic mutagens with thresholds: A brief introduction. Mutat Res. 2009;678:72-5. http://dx.doi.

org/10.1016/j.mrgentox.2009.05.001

Spink DC, Wu SJ, Spink BC, Hussain MM, Vakharia DD, Pentecost BT, et al. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites. Toxicol Appl Pharmacol. 2008;226:213-24.http://dx.doi.org/10.1016/j.taap.2007.08.024

Cómo citar
Ortiz, I. C., Peláez, C. A., Orozco, L. Y., & Zuleta, M. (2012). Interacciones genotóxicas de mutágenos en mezclas binarias mediante ensayo cometa alcalino en linfocitos humanos. Biomédica, 32(3), 437-48. https://doi.org/10.7705/biomedica.v32i3.739
Publicado
2012-05-09
Sección
Artículos originales