Relación entre la ferritina sérica y los marcadores proinflamatorios en el embarazo tardío: un análisis exploratorio en Cartagena, Colombia
Resumen
Introducción. En un estudio previo, se identificó una relación inversa entre los resultados perinatales adversos y el estado del hierro –al final del embarazo– en mujeres reclutadas en un hospital materno de Cartagena, Colombia. Algunos resultados también se han vinculado a estados inflamatorios maternos. Sin embargo, no hay claridad respecto a la relación entre los niveles de hierro y los marcadores proinflamatorios durante este período.
Objetivo. Estimar la relación entre los marcadores inflamatorios y la ferritina sérica en el tercer trimestre de gestación.
Materiales y métodos. Se determinaron los niveles de ferritina sérica, hemoglobina y citocinas proinflamatorias en mujeres gestantes de Cartagena. Se analizó la relación entre la ferritina sérica y las citocinas proinflamatorias, así como la relación entre los marcadores de hierro e inflamación y los resultados perinatales adversos.
Resultados. Los niveles de IL-6 tuvieron una asociación estadísticamente significativa con la concentración de ferritina sérica (β = 0,42, DE = 0,21, p = 0,04). Hubo una correlación positiva débil entre la ferritina sérica materna y el recuento de linfocitos y monocitos.
Conclusiones. Los marcadores de hierro en sangre (ferritina sérica, hemoglobina y hematocrito) están directamente relacionados con el número de linfocitos. El marcador de inflamación, IL-6, está asociado con los niveles de ferritina sérica en el último trimestre del embarazo. Las mujeres con mayor número de leucocitos y niveles elevados de ferritina sérica tuvieron hijos con menor peso al nacer. Esto sugiere una posible participación del hierro en los procesos inflamatorios durante el embarazo y que las condiciones asociadas con la inflamación en el último trimestre podrían tener efectos adversos en los resultados perinatales.
Descargas
Referencias bibliográficas
1. World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. Accessed: March 1st, 2024. Available at: https://apps.who.int/iris/handle/10665/331505
2. World Health Organization. Guideline: Daily iron and folic acid supplementation in pregnant women. Accessed: March 1st, 2024. Available at: https://iris.who.int/bitstream/handle/10665/77770/9789241501996_eng.pdf
3. Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, et al. Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: Systematic review and meta-analysis, 2. Am J Clin Nutr. 2016;103:495-504. https://doi.org/10.3945/ajcn.115.107896
4. Tamura T, Goldenberg RL, Johnston KE, Cliver SP, Hickey CA. Serum ferritin: A predictor of early spontaneous preterm delivery. Obstet Gynecol. 1996;87:360-5. https://doi.org/10.1016/0029-7844(95)00437-8
5. Goldenberg RL, Tamura T, DuBard M, Johnston KE, Copper RL, Neggers Y. Plasma ferritin and pregnancy outcome. Am J Obstet Gynecol. 1996;175:1356-9. https://doi.org/10.1016/s0002-9378(96)70054-6
6. Lao TT. Third trimester iron status and pregnancy outcome in non-anaemic women: Pregnancy unfavourably affected by maternal iron excess. Hum Reprod. 2000;15:1843-8. https://doi.org/10.1093/humrep/15.8.1843
7. Chen X, Scholl TO, Stein TP. Association of elevated serum ferritin levels and the risk of gestational diabetes mellitus in pregnant women: The Camden study. Diabetes Care. 2006;29:1077-82. https://doi.org/10.2337/diacare.2951077
8. Scholl TO. High third-trimester ferritin concentration: Associations with very preterm delivery, infection, and maternal nutritional status. Obstet Gynecol. 1998;92:161-6. https://doi.org/10.1016/s0029-7844(98)00157-4
9. Randall DA, Patterson JA, Gallimore F, Morris JM, McGee TM, Ford JB. The association between haemoglobin levels in the first 20 weeks of pregnancy and pregnancy outcomes. PloS ONE. 2019;14:e0225123. https://doi.org/10.1371/journal.pone.0225123
10. Dewey KG, Oaks BM. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr. 2017;106(Suppl. 6):S1694-702. https://doi.org/10.3945/ajcn.117.156075
11. Gonzales GF, Steenland K, Tapia V. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1477-85. https://doi.org/10.1152/ajpregu.00275.2009
12. Malhotra M, Sharma JB, Batra S, Sharma S, Murthy NS, Arora R. Maternal and perinatal outcome in varying degrees of anemia. Int J Gynecol Obstet. 2002;79:93-100. https://doi.org/10.1016/S0020-7292(02)00225-4
13. Shobeiri F, Begum K, Nazari M. A prospective study of maternal hemoglobin status of Indian women during pregnancy and pregnancy outcome. Nutr Res 2006;26:209-13. https://doi.org/10.1016/j.nutres.2006.05.008
14. Peng Z, Si S, Cheng H, Zhou H, Chi P, Mo M, et al. The associations of maternal hemoglobin concentration in different time points and its changes during pregnancy with birth weight outcomes. Nutrients. 2022;14:2542. https://doi.org/10.3390/nu14122542
15. Liu D, Li S, Zhang B, Kang Y, Cheng Y, Zeng L, et al. Maternal hemoglobin concentrations and birth weight, low birth weight (LBW), and small for gestational age (SGA): Findings from a prospective study in northwest China. Nutrients. 2022;14:858. https://doi.org/10.3390/nu14040858
16. Young MF, Oaks BM, Rogers HP, Tandon S, Martorell R, Dewey KG, et al. Maternal low and high hemoglobin concentrations and associations with adverse maternal and infant health outcomes: An updated global systematic review and meta-analysis. BMC Pregnancy Childbirth. 2023;23:264. https://doi.org/10.1186/s12884-023-05489-6
17. Puerto A, Trojan A, Alvis-Zakzuk NR, López-Saleme R, Edna-Estrada F, Álvarez A, et al. Iron status in late pregnancy is inversely associated with birth weight in Colombia. Public Health Nutr. 2021;1-29. https://doi.org/10.1017/S136898002100166X
18. Oaks BM, Jorgensen JM, Baldiviez LM, Adu-Afarwuah S, Maleta K, Okronipa H, et al. Prenatal iron deficiency and replete iron status are associated with adverse birth outcomes, but associations differ in Ghana and Malawi. J Nutr. 2019;149:513-21. https://doi.org/10.1093/jn/nxy278
19. Chen GD, Li PS, Zhou ZX, Wang HY, Gou XY, Ye SX, et al. Associations of maternal serum concentration of iron-related indicators with birth outcomes in Chinese: A pilot prospective cohort study. Ital J Pediatr. 2024;50:39. https://doi.org/10.1186/s13052-024-01621-0
20. Fowkes FJI, Moore KA, Opi DH, Simpson JA, Langham F, Stanisic DI, et al. Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malariaendemic area in a longitudinal cohort study. BMC Med. 2018;16:156. https://doi.org/10.1186/s12916-018-1146-z
21. Vásquez-Molina ME, Corral-Terrazas M, Apezteguia MA, Carmona-Sawasky J, Levario-Carrillo M. Relación entre las reservas de hierro maternas y del recién nacido. Salud Pública Mex. 2001;43:402-7.
22. Mujica-Coopman MF, Brito A, López de Romaña D, Ríos-Castillo I, Coris H, Olivares M. Prevalence of anemia in Latin America and the Caribbean. Food Nutr Bull. 2015;36(Suppl.2):S119-28. https://doi.org/10.1177/0379572115585775
23. Sosa BEP, Mesa SLR, Correa LMM, López LPM. Indicadores bioquímicos del hierro materno en el tercer trimestre de la gestación y su relación con la antropometría materna y el peso al nacer. Iatreia. 2009;22:16-26. https://doi.org/10.17533/udea.iatreia.13955
24. Lee S, Guillet R, Cooper EM, Westerman M, Orlando M, Pressman E, et al. Maternal inflammation at delivery affects assessment of maternal iron status. J Nutr. 2014;144:1524-32. https://doi.org/10.3945/jn.114.191445
25. Petkova-Marinova T, Ruseva B, Paneva-Barzashka B, Atanasova M, Dragomirova P, Laleva PD. Relationships between hepcidin, interleukin-6 and parameters of iron metabolism in pregnant women. Arch Balk Med Union. 2020;55:564-72. https://doi.org/10.31688/ABMU.2020.55.4.02
26. Dutta S, Sengupta P, Liew FF. Cytokine landscapes of pregnancy: Mapping gestational immune phases. Gynecol Obstet Clin Med 2024;4:e000011. http://gocm.bmj.com/content/4/1/e000011.abstract
27. Stokkeland LMT, Giskeødegård GF, Stridsklev S, Ryan L, Steinkjer B, Tangerås LH, et al. Serum cytokine patterns in first half of pregnancy. Cytokine. 2019;119:188-96. https://doi.org/10.1016/j.cyto.2019.03.013
28. Cubro H, Kashyap S, Nath MC, Ackerman AW, Garovic VD. The role of interleukin-10 in the pathophysiology of preeclampsia. Curr Hypertens Rep. 2018;20:36. https://doi.org/10.1007/s11906-018-0833-7
29. Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia. Curr Opin Nephrol Hypertens. 2015;24:131-8. https://doi.org/10.1097/MNH.0000000000000105
30. Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia. J Pregnancy. 2021;2021:6649608. https://doi.org/10.1155/2021/6649608
31. Kırıcı P, Çağıran F, Kali Z, Tanrıverdi E, Mavral N, Ecin S. Determination of maternal serum pro-inflammatory cytokine changes in intrauterine growth restriction. Eur Rev Med Pharmacol Sci. 2023;27:1996-2001. https://doi.org/10.26355/eurrev_202303_31565
32. Sandnes M, Ulvik RJ, Vorland M, Reikvam H. Hyperferritinemia - A clinical overview. J Clin Med. 2021;10:2008. https://doi.org/10.3390/jcm10092008
33. World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience. Accessed: March 1st, 2024. Available at: https://www.who.int/publications/i/item/9789241549912
34. Mannaerts D, Faes E, Cos P, Briedé JJ, Gyselaers W, Cornette J, et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status, and vascular function. PLoS ONE. 2018;13:1-14. https://doi.org/10.1371/journal.pone.0202919
35. Ölmez F, Oğlak S, Behram M, Özköse Z, Can E, Ünal Ö, et al. Serum prohepcidin concentrations in preeclamptic pregnant women: An analysis concerning serum iron status markers and compared to healthy pregnant women. East J Med. 2022;27. https://doi.org/10.5505/ejm.2022.32659
36. Ahmed YIB, Yagoub HS, Hassan MA, Adam I, Hamdan HZ. Maternal serum iron status, hepcidin and interleukin-6 levels in women with preeclampsia. Front Physiol. 2023;14:1049994. https://doi.org/10.3389/fphys.2023.1049994
37. Tang YM, Chen XZ, Li GR, Zhou RH, Ning H, Yan H. Effects of iron deficiency anemia on immunity and infectious disease in pregnant women. Wei Sheng Yan Jiu. 2006;35:79-81.
38. AlRajeh L, Zaher A, Alghamdi A, Alsheikh R, AlSultan O. Effects of iron deficiency and its indicators on lymphocyte subsets: A study at King Fahd Hospital of the University, Saudi Arabia. J Blood Med. 2022;13:61-7. https://doi.org/10.2147/JBM.S342321
39. Hallquist NA, McNeil LK, Lockwood JF, Sherman AR. Maternal-iron-deficiency effects on peritoneal macrophage and peritoneal natural-killer-cell cytotoxicity in rat pups. Am J Clin Nutr. 1992;55:741-6. https://doi.org/10.1093/ajcn/55.3.741
40. Spear AT, Sherman AR. Iron deficiency alters DMBA-induced tumor burden and natural killer cell cytotoxicity in rats. J Nutr. 1992;122:46-55. https://doi.org/10.1093/jn/122.1.46
41. Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence, and human diseases. Biochim Biophys Acta Gen Subj. 2019;1863:1398-409. https://doi.org/10.1093/jn/122.1.46
42. Ni S, Yuan Y, Kuang Y, Li X. Iron metabolism and immune regulation. Front Immunol. 2022;13:816282. https://doi.org/10.3389/fimmu.2022.816282
43. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121:985-97. https://doi.org/10.1172/JCI44490
44. DeRosa A, Leftin A. The iron curtain: Macrophages at the interface of systemic and microenvironmental iron metabolism and immune response in cancer. Front Immunol. 2021;12:614294. https://doi.org/10.3389/fimmu.2021.614294
45. Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, et al. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci USA. 2022;119:e2110166119. https://doi.org/10.1073/pnas.2110166119
46. Nakanishi N, Yoshida H, Matsuo Y, Suzuki K, Tatara K. White blood-cell count and the risk of impaired fasting glucose or type II diabetes in middle-aged Japanese men. Diabetologia. 2002;45:42-8. https://doi.org/10.1007/s125-002-8243-1
47. Shin G, Jang K, Kim M, Lee JH, Yoo HJ. Inflammatory markers and plasma fatty acids in predicting WBC level alterations in association with glucose-related markers: A crosssectional study. Front Immunol. 2020;11:629. https://doi.org/10.3389/fimmu.2020.00629
48. Margolis KL, Manson JE, Greenland P, Rodabough RJ, Bray PF, Safford M, et al. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: The Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165:500-8. https://doi.org/10.1001/archinte.165.5.500
49. Willems JM, Trompet S, Blauw GJ, Westendorp RGJ, de Craen AJM. White blood cell count and C-reactive protein are independent predictors of mortality in the oldest old. J Gerontol Ser A. 2010;65A:764-8. https://doi.org/10.1093/gerona/glq004
50. Dockree S, Shine B, Pavord S, Impey L, Vatish M. White blood cells in pregnancy: Reference intervals for before and after delivery. eBioMedicine. 2021;74:103715. https://doi.org/10.1016/j.ebiom.2021.103715
51. Rewatkar M, Jain S, Jain M, Mohod K. C-reactive protein and white blood cell count as predictors of maternal and neonatal infections in prelabour rupture of membranes between 34 and 41 weeks of gestation. J Obstet Gynaecol. 2018;38:622-8. https://doi.org/10.1080/01443615.2017.1398221
52. Ma M, Zhu M, Zhuo B, Li L, Chen H, Xu L, et al. Use of complete blood count for predicting preterm birth in asymptomatic pregnant women: A propensity score-matched analysis. J Clin Lab Anal. 2020;34:e23313. https://doi.org/10.1002/jcla.23313
53. Liao D, Chen L, Li Q, Liu G, Wang W, Li J, et al. Predictive value of the peripheral blood parameters for preeclampsia. Clin Lab. 2022;68. https://doi.org/10.7754/Clin.Lab.2021.210726
54. Liu M, Lin P, Qu M, Zhai R, Zhang L, Zhang L, et al. Neutrophil count is a useful marker to predict the severity of preeclampsia. Clin Exp Hypertens. 2022;44:334-40. https://doi.org/10.1080/10641963.2022.2043891
55. Moshe NS, Michaeli J, Shalev L, Ruchlemer R, Farkash R, Samueloff A, et al. Maternal white blood cell count: A guide for the neonatal birth weight estimate at term. Am J Obstet Gynecol. 2020;222:S627-8. https://doi.org/10.1016/j.ajog.2019.11.1024
56. Srebnik N, Michaeli J, Shalev L, Ruchlemer R, Farkash R, Grisaru-Granovsky S. The maternal leukocyte count at admission for labor is indicative of early maternal postpartum infectious morbidity and adverse neonatal outcome. Eur J Obstet Gynecol Reprod Biol. 2021;258:9-15. https://doi.org/10.1016/j.ejogrb.2020.12.032
57. Eriç Horasanlı J, Alp EC, Bülbül R. Evaluation of complete blood cell count parameters in the diagnosis of threatened preterm labor and premature rupture of membranes. Dubai Med J. 2022;5:157-62. https://doi.org/10.1159/000524968
58. Zeng Y, Li L, Mao M, Liang X, Chen M, Xia Y, et al. Establishment of reference intervals of complete blood count for twin pregnancy. BMC Pregnancy Childbirth. 2021;21:714. https://doi.org/10.1186/s12884-021-04192-8
59. Ruscitti P, Di Benedetto P, Berardicurti O, Panzera N, Grazia N, Lizzi AR, et al. Proinflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020;10:12232. https://doi.org/10.1038/s41598-020-69031-w
60. Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins - Regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κβ- dependent signaling. Eur J Cell Biol. 2012;91:496-505. https://doi.org/10.1016/j.ejcb.2011.09.008
61. Sobotta S, Raue A, Huang X, Vanlier J, Jünger A, Bohl S, et al. Model based targeting of IL-6-induced inflammatory responses in cultured primary hepatocytes to improve application of the JAK inhibitor Ruxolitinib. Front Physiol. 2017;8:775. https://doi.org/10.3389/fphys.2017.00775
62. Zhang Z, Yang Y, Hill MA, Wu J. Does C-reactive protein contribute to atherothrombosis via oxidant-mediated release of pro-thrombotic factors and activation of platelets? Front Physiol. 2012;3:433. https://doi.org/10.3389/fphys.2012.00433
63. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271-6. https://doi.org/10.1172/JCI20945
64. Rivera S, Nemeth E, Gabayan V, López MA, Farshidi D, Ganz T. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood. 2005;106:2196-200. https://doi.org/10.1182/blood-2005-04-1766
65. Bouariu A, Panaitescu AM, Nicolaides KH. First trimester prediction of adverse pregnancy outcomes - Identifying pregnancies at risk from as early as 11-13 weeks. Med Kaunas Lith. 2022;58. https://doi.org/10.3390/medicina58030332
66. Khambalia AZ, Collins CE, Roberts CL, Morris JM, Powell KL, Tasevski V, et al. High maternal serum ferritin in early pregnancy and risk of spontaneous preterm birth. Br J Nutr. 2015;114:455-61. https://doi.org/10.1017/S0007114515001932
67. Jarmund AH, Giskeødegård GF, Ryssdal M, Steinkjer B, Stokkeland LMT, Madssen TS, et al. Cytokine patterns in maternal serum from first trimester to term and beyond. Front Immunol. 2021;12:752660. https://doi.org/10.3389/fimmu.2021.75266068
68. Farina L, Winkelman C. A review of the role of proinflammatory cytokines in labor and noninfectious preterm labor. Biol Res Nurs. 2005;6:230-8. https://doi.org/10.1177/1099800404271900
69. Preacher KJ, Rucker DD, MacCallum RC, Nicewander WA. Use of the extreme groups approach: A critical reexamination and new recommendations. Psychol Methods. 2005;10:178-92. https://doi.org/10.1037/1082-989X.10.2.178
70. Thaxton JE, Sharma S. Interleukin-10: A multi-faceted agent of pregnancy. Am J Reprod Immunol. 2010;63:482-91. https://doi.org/10.1111/j.1600-0897.2010.00810.x
Algunos artículos similares:
- Rosa Magdalena Uscátegui, Adriana M. Correa, Jaime Carmona-Fonseca, Cambios en las concentraciones de retinol, hemoglobina y ferritina en niños palúdicos colombianos , Biomédica: Vol. 29 Núm. 2 (2009)
- Elpidia Poveda, Alexandra Cuartas, Saralicia Guarín, Yibby Forero, Elsa Villarreal, Estado de los micronutrientes hierro y vitamina A, factores de riesgo para las deficiencias y valoración antropométrica en niños preescolares del municipio de Funza, Colombia , Biomédica: Vol. 27 Núm. 1 (2007)
- Margarita Arboleda, María Fernanda Pérez, Diana Fernández, Luz Yaned Usuga, Miler Meza, Perfil clínico y de laboratorio de los pacientes con malaria por Plasmodium vivax, hospitalizados en Apartadó, Colombia , Biomédica: Vol. 32 (2012): Suplemento 1, Malaria
- Beatriz Elena Parra, Luz Mariela Manjarrés, Alba Lucía Gómez, Dora María Alzate, María Clemencia Jaramillo, Evaluación de la educación nutricional y un suplemento para prevenir la anemia durante la gestación. , Biomédica: Vol. 25 Núm. 2 (2005)
- Ángela Medina, David López, Luis Reinel Vásquez, Pediculosis capitis grave en una niña inscrita en una guardería , Biomédica: Vol. 39 Núm. 4 (2019)
- Carlos Julio Vargas-Potes, Diana Marcela Mendoza-Urbano, Luis Gabriel Parra-Lara , Ángela R. Zambrano, Desafíos en el manejo del sarcoma de Ewing en una paciente testigo de Jehová , Biomédica: Vol. 43 Núm. 1 (2023)
- Iván Peña, Juan Sarmiento, Cristian Porras, Ximena Cediel , Ana Camargo, Mielopatía por déficit de cobre: serie de casos y revisión de la literatura , Biomédica: Vol. 43 Núm. 2 (2023)

Derechos de autor 2025 Biomédica

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |