Curvas del índice cintura-talla de adultos colombianos

María Victoria Benjumea, Cristian Santa , Alejandro Estrada , .

Palabras clave: relación cintura-estatura, circunferencia de la cintura, antropometría, gráfico, adulto, Colombia

Resumen

Introducción. En Colombia, el sobrepeso y la obesidad abdominal se incrementan en forma progresiva en la población adulta, especialmente en las mujeres.
Objetivo. Elaborar curvas de los percentiles del índice cintura-talla de adultos colombianos por sexo y edad.
Materiales y métodos. Se realizó un análisis secundario de los datos de la Encuesta Nacional de la Situación Nutricional 2015, que contenía medidas de cintura, peso y talla en adultos entre los 20 y los 60 años. Se utilizaron modelos generalizados aditivos de localización, escala y forma, con transformación box-cox power exponential para construir las curvas de los percentiles. Se hizo una validación interna para garantizar que los modelos se ajustaran a los datos.
Resultados. Se estudiaron 23.759 adultos multiétnicos de Colombia, el 49,8 % fueron mujeres. Las curvas del índice cintura-talla de los hombres, se visualizaron con ligera curvatura, mientras que las de las mujeres aparecieron más planas. La mediana del índice se incrementó de forma continua en ambos sexos: hasta los 45 años en las mujeres (0,45 a 0,49) y hasta los 55 años en los hombres (0,44 a 0,49). En los hombres se mantuvo el valor de 0,50 después de los 55 años, pero en las mujeres no: permaneció en 0,50 hasta los 53 años y, de ahí en adelante, aumentó a 0,51.
Conclusión. Las curvas ajustadas con la distribución box-cox power exponential explicaron el comportamiento creciente del índice cintura-talla por edad y sexo y la capacidad predictiva del modelo. El incremento total de la mediana del índice por edad y sexo fue similar e incremental (mujeres: 0,45-0,51; hombres: 0,44-0,50).

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

1. Lobstein T, Jewell J. What is a “high” prevalence of obesity? Two rapid reviews and a proposed set of thresholds for classifying prevalence levels. Obesy Rev. 2022;23:e13363. https://doi.org/10.1111/obr.13363

2. Benjumea MV, Bermúdez J. Situación nutricional por indicadores antropométricos. En: Encuesta Nacional de la Situación Nutricional de Colombia – ENSIN 2015. Bogotá: Instituto Colombiano de Bienestar Familiar/OPS/INS/UNAL; 2016. p. 362-585.

3. Ministerio de Salud y Protección Social. Resolución 2465 de 2016. Fecha de consulta: 8 de marzo de 2024. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-2465-2016.pdf

4. Bajpai A. Waist‑to‑height ratio—The new body mass index? Indian J Pediatr. 2022;89:849-50. https://doi.org/10.1007/s12098-022-04257-2

5. Pasdar Y, Moradi S, Moludi J, Saiedi S, Moradinazar M, Hamzeh B, et al. Waist-to-height ratio is a better discriminator of cardiovascular disease than other anthropometric indicators in Kurdish adults. Sci Rep. 2020;10:16228. https://doi.org/10.1038/s41598-020-73224-8

6. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343-50. https://doi.org/10.1056/NEJM200105033441801

7. Siren R, Eriksson JG, Vanhanen H. Waist circumference a good indicator of future risk for type 2 diabetes and cardiovascular disease. BMC Public Health. 2012;12:631. https://doi.org/0.1186/1471-2458-12-631

8. Ministerio de la Protección Social, PROFAMILIA, Instituto Nacional de Salud, Instituto Colombiano de Bienestar familiar. Encuesta Nacional de la Situación Nutricional en Colombia – ENSIN 2010. Bogotá: Da Vinci Editores y Cía.; 2011.

9. Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ, et al. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020;49:810-23. https://doi.org/10.1093/ije/dyz273

10. Ramírez-López LX, Aguilera AM, Rubio CM, Aguilar-Mateus AM. Síndrome metabólico: una revisión de criterios internacionales. Rev Colomb Cardiol. 2021;28:60-6. https://doi.org/10.24875/RCCAR.M21000010

11. Lear SA, James PT, Ko GT, Kumanyika S. Appropriateness of waist circumference and waist-to-hip ratio cutoffs for different ethnic groups. Eur J Cli Nutr. 2010;64:42-61. https://doi.org/10.1038/ejcn.2009.70

12. Tang HK, Nguyen CTC, Vo NHT. Anthropometric indicators to estimate percentage of body fat: A comparison using cross-sectional data of children and adolescents in Ho Chi Minh City, Vietnam. Indian J Pediatr. 2022;89:857-64. https://doi.org/10.1007/s12098-021-03882-7

13. Zhang S, Fu X, Zhi Du, Guo X, Li Z, Sun G, et al. Is waist‑to‑height ratio the best predictive indicator of cardiovascular disease incidence in hypertensive adults? A cohort study. BMC Cardiovasc Disord. 2022;22:214. https://doi.org/10.1186/s12872-022-02646-1

14. Hernández-Rodríguez J, Duchi-Jimbo PN, Domínguez-Alonso E, Díaz-Díaz O, Martínez-Montenegro I, Bosch-Pérez Y, et al. Valor de corte del índice cintura/talla como predictor independiente de disglucemias. Rev Cubana Endocrinol. 2017;28.

15. Meseri R, Ucku R, Unal B. Waist:height ratio: A superior index in estimating cardiovascular risks in Turkish adults. Public Health Nutr. 2014;17:2246-52. https://doi.org/10.1017/S136898001300267X

16. Peng Y, Li W, Wang Y, Bo J, Chen H. The cut-off point and boundary values of waist-toheight ratio as an indicator for cardiovascular risk factors in Chinese adults from the PURE study. PLoS ONE. 2015;10:e0144539. https://doi.org/10.1371/journal.pone.0144539

17. Gonçalves M, Fonseca-Passos MC, Daleprane J, Correa-Koury J. Is it possible to identify underlying cardiovascular risk in young trained military? J Sports Med Phys Fitness. 2016;56:125-32.

18. Kahn HS, Bullard K. Beyond body mass index: Advantages of abdominal measurements for recognizing cardiometabolic disorders. Am J Med. 2016;129:74-81.e2. https://doi.org/10.1016/j.amjmed.2015.08.010

19. Staynor JMD, Smith MK, Donnelly CJ, Sallam AE, Ackland TR. DXA reference values and anthropometric screening for visceral obesity in Western Australian adults. Sci Rep. 2020;10:18731. https://doi.org/10.1038/s41598-020-73631-x

20. Forero AY, Forero LC. Comparación entre mediciones e índices antropométricos para evaluar la obesidad general y la abdominal, Colombia ENSIN 2015. Biomédica. 2023;43(Supl.3):88-98. https://doi.org/10.7705/biomedica.7011

21. Vargas-Moranth R, Alcocer-Olaciregui A, Bilbao-Ramírez J, Lío-Carrillo JF, Fontalvo-De Alba G, Cerro-Martínez C, et al. Prevalencia de obesidad según relación cintura-talla en cuatro municipios del caribe colombiano. Archivos de Medicina. 2018;18:60-8. https://doi.org/10.30554/archmed.18.1.2356.2018

22. Instituto Colombiano de Bienestar Familiar, Ministerio de Salud y Protección Social, Instituto Nacional de Salud. Encuesta Nacional de la Situación Nutricional – ENSIN 2015. Bogotá: Instituto Colombiano de Bienestar Familiar/OPS/INS/UNAL; 2016. p. 37-88.

23. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaing: Human Kinetic Boocks; 1988. p. 177.

24. The International Society for the Advancement of Kinanthropometry – ISAK. Protocolo internacional para la valoración antropométrica. 2019. Fecha de consulta: 8 de marzo de 2024. Disponible en: https://www.youtube.com/watch?v=Ff2WDc7LhXU

25. Cleveland WS, Grosse E, Shyu WM. Local regression models. In: Chambers JM, Hastie TJ, editors. Statistical Models. New York: Wadsworth & Brooks/Cole; 1992.

26. Koenker RP, Pin Ng, Portnoy S. Quantile Smoothing Splines. Biometrika. 1994;81:673-80. https://doi.org/10.2307/2337070

27. Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw. 2007;23:1-46. https://doi.org/10.18637/jss.v023.i07

28. Rigby RA, Stasinopoulos DM, Voudouris V. Discussion: A comparison of GAMLSS with quantile regression. Stat Model. 2013;13:335-48. https://doi.org/10.1177/1471082X13494316

29. Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion). Appl Statist. 1994;43:429-67.

30. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8:551-61. https://doi.org/10.1002/sim.4780080504

31. Rigby RA, Stasinopoulos DM, Heller GZ, De Bastiani F. Maximum likelihood estimation. In: Distributions for modeling location, scale, and shape: Using GAMLSS in R. 1st ed. Boca Ratón (FL): Chapman and Hall/CRC; 2019. p. 143-73.

32. WHO Multicentre Growth Reference Study Group. Assessment of differences in linear growth among populations in the WHO Multicentre Growth Reference Study. Acta Paediatr. 2006;95:56-65. https://doi.org/10.1111/j.1651-2227.2006.tb02376.x

33. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale (NJ): Lawrence Erlbaum Associates. 1988. Fecha de consulta: 8 de marzo de 2024. Disponible en: http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf

34. Bozdogan H. Akaike’s information criterion and recent developments in information complexity. J Math Psychol. 2000;44:62-91. https://doi.org/10.1006/JMPS.1999.1277

35. Mardia KV. Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā B. 1974;36:115-28.

36. Royston P, Wright EM. Goodness of fit statistics for the age-specific reference intervals. Stat Med. 2000;19:2943-62. https://doi.org/10.1002/1097-0258(20001115)19:21<2943::aid-sim559>3.0.co;2-5

37. van Buuren S, Fredriks M. Worm plot: Simple diagnostic device for modelling growth reference curves. Stat Med. 2001;20:1259-77. https://doi.org/10.1002/sim.746

38. Rigby RA, Stasinopoulos DM. Smooth centile curves for skew and kurtotic data modelled using the box-cox power exponential distribution. Stat Med. 2004b;23:3053-76. https://doi.org/10.1002/sim.1861

39. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16:1190-208.

40. Rigby RA, Stasinopoulos DM. Automatic smoothing parameter selection in GAMLSS with an application to centile estimation. Stat Methods Med Res. 2014;23:318-32. https://doi.org/10.1177/0962280212473302

41. Millar SR, Perry IJ, Phillips CM. Assessing cardiometabolic risk in middle‑aged adults using body mass index and waist–height ratio: Are two indices better than one? A cross‑sectional study. Diabetol Metab Syndr. 2015;7:73. https://doi.org/10.1186/s13098-015-0069-5

42. Fu-Liang Zhang, Jia-Xin Ren, Peng Zhang, Hang Jin, Yang Qu, Yao Yu, et al. Strong association of waist circumference (WC), body mass index (BMI), waist-to-height ratio (WHtR), and waist-to-hip ratio (WHR) with diabetes: A population-based cross-sectional study in Jilin province, China. J Diabetes Res. 2021:8812431. https://doi.org/10.1155/2021/8812431

Cómo citar
1.
Benjumea MV, Santa C, Estrada A. Curvas del índice cintura-talla de adultos colombianos. Biomed. [Internet]. 30 de mayo de 2025 [citado 20 de junio de 2025];45(2):228-43. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/7647

Algunos artículos similares:

Publicado
2025-05-30
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
Crossref Cited-by logo
QR Code