Las glándulas salivales de dos flebotominos vectores de Leishmania: Lutzomyia migonei (França) y Lutzomyia ovallesi (Ortiz) (Diptera: Psychodidae)

Elsa Nieves, Neudo Buelvas, Maritza Rondón, Néstor González, .

Palabras clave: Lutzomyia, leishmaniasis, proteínas y péptidos salivales, saliva, Venezuela

Resumen

Introducción. La leishmaniasis es una enfermedad transmitida por la inoculación intradérmica de promastigotes de Leishmania (Kinetoplastida: Trypanosomatidae) junto con la saliva del vector durante la picada de un flebotomino infectado.
Objetivo. Comparar las glándulas salivales de Lutzomyia ovallesi (Ortiz, 1952) y Lutzomyia migonei (França, 1920) (Diptera: Psychodidae) vectores de Leishmania en América del Sur.
Materiales y métodos. Se analizaron los perfiles proteicos por SDS-PAGE de las glándulas salivales de estas dos especies en los diferentes grupos y tiempos posteriores a la alimentación. Se evaluó la presencia de anticuerpos producidos en los ratones inmunizados por la picaduras de L. ovallesi y L. migonei por inmunotransferencia.
Resultados. Los resultados mostraron que no hay cambio aparente en la cinética de expresión de las proteínas salivales, inducidas por los distintos estados fisiológicos, en las dos especies, presentándose variaciones cualitativas y cuantitativas. Los perfiles proteicos revelaron alrededor de 16 a 18 polipéptidos, con pesos moleculares entre 6 a 180 kDa. Los resultados mostraron proteínas específicas para L. migonei y L. ovallesi. También, se detectaron anticuerpos producidos en los ratones inmunizados por las picaduras de ambas especies, contra proteínas específicas de las glándulas salivales.
Conclusión. Los resultados proveen información básica sobre las proteínas salivales de las especies L. migonei y L. ovallesi que podrían ser importantes en futuros estudios como posible herramienta para estudiar los factores de riesgos en la población y en otros huéspedes vertebrados.

Descargas

Los datos de descargas todavía no están disponibles.
  • Elsa Nieves LAPEX-Laboratorio de Parasitología Experimental, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
  • Neudo Buelvas LAPEX-Laboratorio de Parasitología Experimental, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
  • Maritza Rondón LAPEX-Laboratorio de Parasitología Experimental, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
  • Néstor González LAPEX-Laboratorio de Parasitología Experimental, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.

Referencias bibliográficas

1. Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443-74.
2. Holiday-Hanson ML, Yuval B, Washino RK. Energetics and sugar-feeding of field-collected anopheline females. J Vector Ecol. 1997;22:83-9.
3. Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hemathophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA. 1999;96:15155-60.
4. Elnaiem DE, Meneses C, Slotman M, Lanzaro GC. Genetic variation in the sand fly salivary protein, SP-15, a potential vaccine candidate against Leishmania major. Insect Mol Biol. 2005;14:145-50.
5. Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, Seitz AE, et al. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7:52.
6. Wahba M, Riera C. Salivary gland composition of some Old World vector sand fly. J Egypt Parasitol. 2006;36:289-96.
7. Prates DB, Santos LD, Miranda JC, Souza AP, Palma MS, Barral-Netto M, et al. Changes in amounts of total salivary glands proteins of Lutzomyia longipalpis Diptera: Psychodidae according to age and diet. J Med Entomol. 2008;43:409-13.
8. Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995;4:143-52.
9. Stark KR, James AA. Anticoagulants in vector arthropods. Parasitol Today. 1996;12:430-7.
10. Ghosh KN, Mukhopadhyay J. The effect of anti-sandfly saliva antibodies on Phlebotomus argentipes and Leishmania donovani. Int J Parasitol. 1998;28:275-81.
11. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton ED, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188:1941-53.
12. Belkaid Y, Valenzuela JG, Kamhawi S, Rownton E, Sacks DL, Ribeiro JM. Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: an adaptive response induced by the fly? Proc Natl Acad Sci USA. 2000;97:6704-9.
13. Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, et al. Human immune response to sandfly salivary gland antigens: a useful epidemiological marker?. Am J Trop Med Hyg. 2000;62:740-5.
14. Rohousova I, Ozensoy S, Ozbel Y, Volf P. Detection of species-specific antibody response of humans and mice bitten by sandflies. Parasitol. 2005;130:493-9.
15. Ribeiro JM. Role of saliva in blood-feeding by arthropods. Ann Rev Entomol. 1987;32:463-78.
16. Champagne DE. The role of salivary vasodilators in blood-feeding and parasite transmission. Parasitol Today. 1994;10:430-3.
17. Bowman AS, Dillwith JW, Saber JR. Tick salivary prostaglandins: presence, origin and significance. Parasitol Today. 1996;12:388-96.
18. Bowman, JD, Waddell D, Hanson BD. Biochemical mechanism of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1997;27: 916-20.
19. Champagne DE, Valenzuela JG. Pharmacology of Haematophagous arthropod saliva. En: Wikel SK, editor. The immunology of host-ectoparasitic arthropod relationships. Wallingford, UK: CAB International; 1996. p. 107-30.
20. Wikel SK, Ramachandra RN, Bergman DK. Arthropod modulation of host inmune responses. En: Wikel SK, editor. The immunology of host-ectoparasitic arthropod relationships. Wallingford, UK: CAB International; 1996. p. 107-30.
21. Volf P, Tesarova P, Nohynkova E. Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Med Vet Entomol. 2000;14:251-6.
22. Volf P, Rohousova I. Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology. 2001; 122:37-41.
23. Gómez RB, Brodskyn C, De Oliveira CI, Costa J, Miranda JC, Caldas A, et al. Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed - type hypersensitivity. J Infect Dis. 2002;186:1530-4.
24. Nieves E, Pimenta PF. Development of Leishmania (Vianna) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). J Med Entomol. 2000;37:134-40.
25. Nieves E, Pimenta PF. Influence of vertebrate blood meals on the development of Leishmania (Vianna) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). Am J Trop Med Hyg. 2002;37:640-7.
26. Nieves E, Dávila-Vera D, Palacios-Prü E. Daño ultraestructural del intestino medio abdominal de Lutzomyia ovallesi (Ortiz) (Diptera: Psychodidae) ocasionado por Leishmania (Leishmania) amazonensis. Parasitol Latinoam. 2004;59:115-22.
27. Noguera P, Rondón M, Nieves E. Caloric content of the sand fly Lutzomyia ovallesi (Diptera: Psychodidae) vector of Leishmania. Revista Colombiana de Entomología. 2006;32:57-60.
28. Bonfante-Garrido R, Urdaneta R, Urdaneta I, Alvarado J. Natural infection of Lutzomyia ovallesi (Diptera: Psychodidae) with Leishmaniasis in Duaca, Lara State, Venezuela. Trans R Soc Trop Med Hyg. 1991;85:61.
29. Bonfante-Garrido R, Spinetti H, Cupillo E, Momen H, Grimaldi G. Lutzomyia ovallesi (Diptera: Psychodidae) as a vector of cutaneous leishmaniasis in Venezuela. Parassitologia. 1991;33:99-104.
30. Feliciangeli MD. Vectors of leishmaniasis in Venezuela. Parassitologia. 1991;33:229-36.
31. Añez N, Nieves E, Cazorla D. Epidemiology of cutaneous leishmaniasis in Mérida, Venezuela: III. Altitudinal distribution, age structure, natural infection and feeding behaviour of sandflies and their relation to the risk of transmission. Ann Trop Med Parasitol. 1994;88:279-87.
32. Nieves E, Villarreal N, Rondón M, Sánchez M, Carrero J. Factores de riesgo y evaluación de conocimiento sobre la leishmaniasis tegumentaria en un área endémica de Venezuela. Biomédica. 2008;28:347-56.
33. Killick-Kendrick R, Leaney AJ, Ready PD. The establishment, maintenance and productivity of laboratory colony of Lutzomyia Longipalpis (Diptera: Psychodidae). J Med Entomol. 1977;13:429-40.
34. Lowry OH, Rosenbrough N, Farr A, Randall R. Protein measurement with the Folin Phenol reagent. J Biol Chem. 1951;193:265-75.
35. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5.
36. Towbin J, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350-4.
37. Wayne WD. Bioestadística base para el análisis de las Ciencias de la Salud. Cuarta edición. México: Limusa Wiley; 2002.
38. Ribeiro JM, Rossignol PA, Spielman A. Blood finding strategy of a capillary - feeding sandfly Lutzomyia longipalpis. Comp Biochem Physiol. 1986;83:683-6.
39. Cerná P, Mikes L, Volf P. Salivary gland hyaluronidase in various species of phlebotomine sandflies (Diptera: Psychodidae). Insect Biochem Biol. 2002;32:1691-7.
40. Salomón OD, Quintana MG, Bezzi G, Morán ML, Betbeder E, Valdéz DV. Lutzomyia migonei as putative vector of visceral leishmaniasis in La Banda, Argentina. Acta Trop. 2010;113:84-7.
41. Feliciangeli MD, Reyes RM, Limongi JE. Natural infection of Lutzomyia ovallesi (Diptera: Psychodidae) with parasites of the Leishmania braziliensis complex in a restricted focus of cutaneous leishmaniasis in northern Venezuela. Mem Inst Oswaldo Cruz. 1988;83:393-4.
42. Feliciangeli MD, Rodríguez N, Bravo A, Arias F, Guzmán B. Vectors of cutaneous leishmaniasis in north-central Venezuela. Med Vet Entomol. 1994;5:317-24.
43. Moreira-Ferro CK, Marinnotti O, Bijovsky AT. Morphological and biochemical analyses of the salivary glands of the malaria vector, Anopheles darlingi. Tissue Cell. 1999;31:264-73.
44. Nascimento EP, Dos Santos Malafronte R, Marinnotti O. Salivary gland proteins of the mosquito Culex quinquefasciatus. Arch Insect Biochem Physiol. 2000;43:9 -15.
45. Cerná P, Mikes L, Volf P. Salivary gland hyaluronidase in various species of phlebotomine sandflies (Diptera: Psychodidae). Insect Biochem Biol. 2002;32:1691-7.
46. Kato H, Jochim RC, Lawyer PG, Valenzuela JG. Identification and characterization of a salivary adenosine deaminase from the sand fly Phlebotomus duboscqi, the vector of Leishmania major in subsaharan Africa. J Exp Biol. 2007;210:733-40.
47. Ribeiro JM, Rowton ED, Charlab R. Salivary amylase activity of the phlebotomine sand fly, Lutzomyia longipalpis. Insect Biochem Mol Biol. 2000;30:271-7.
48. Katz O, Waitumbi JN, Zer R, Warburg A. Adenosine, AMP, and protein phosphatase activity in sandfly saliva. Am J Trop Med Hyg. 2000;62:145-50.
49. Jacobson RL, Schlein Y. Phlebotomus papatasi and Leishmania major parasites express α- amylase and α-glucosidase. Acta Trop. 2001;78:41-9.
50. Valenzuela JG, Belkaid Y, Rowton ED, Ribeiro JM. The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases. J Exp Biol. 2001;204:229-37.
51. Valenzuela JG, Garfield M, Rowton ED, Pham VM. Identification of the most abundant secreted proteins from the salivary glands of the sandfly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol. 2004;207:3717-29.
52. Freire T, Robillo C, Casaravilla C, Álvarez DE, Medeiros AC, Carmona C, et al. Antígenos mucínicos de O -glicosilación simple: nuevas similitudes moleculares entre células cancerosas y parásitos. Actas Fisiol. 2002;8:89-107.
53. Morris RB, Shoemaker CB, David JR, Lanzaro GR, Titus RG. Sandfly Maxadilan exacerbates Infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol. 2001;167:5226-30.
Cómo citar
1.
Nieves E, Buelvas N, Rondón M, González N. Las glándulas salivales de dos flebotominos vectores de Leishmania: Lutzomyia migonei (França) y Lutzomyia ovallesi (Ortiz) (Diptera: Psychodidae). biomedica [Internet]. 30 de septiembre de 2010 [citado 29 de marzo de 2024];30(3):401-9. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/274

Algunos artículos similares:

Publicado
2010-09-30
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code