La separación materna durante la lactancia altera los niveles basales del sistema neuroendocrino en ratas adolescentes y adultas

Irene Riveros-Barrera, Zulma Dueñas, .

Palabras clave: lactancia materna, relación madre-hijo, corticosterona, hormona liberadora de corticotropina, oxitocina, arginina vasopresina, sistema hipófiso-suprarrenal

Resumen

Introducción. En diversos modelos animales, incluido el de la separación materna durante la lactancia, se ha demostrado que las experiencias tempranas adversas, como el maltrato, el abandono materno y el estrés psicosocial, pueden favorecer el desarrollo de algunas enfermedades mentales, pero no se han descrito completamente varios de los cambios que se producen en el sistema neuroendocrino.
Objetivo. Determinar si la separación materna durante la lactancia modificaba los niveles basales de neurohormonas como la corticosterona, la corticotropina (ACTH), la oxitocina y la vasopresina (ADH), en ratas jóvenes (35 días) y adultas (90 días).
Materiales y métodos. Se separaron ratas Wistar de sus madres durante dos periodos de tres horas diarias a lo largo de los 21 días de lactancia. A los 35 y 90 días se tomaron muestras de los grupos de las ratas de control y de las separadas de la madre, para obtener el suero y posteriormente medir cada una de las hormonas mediante un ensayo inmunoenzimático.
Resultados. Las concentraciones de corticosterona fueron mayores en las hembras adultas de control que en el resto de los grupos, y menores en los machos adultos de control. Las de ACTH fueron mayores en los machos y hembras jóvenes separadas de la madre que en los grupos de adultos. Los niveles de oxitocina fueron significativamente mayores en las hembras adultas separadas de la madre que en los otros grupos y significativamente menores en los machos adultos. En cuanto a la vasopresina, los grupos separados de la madre tuvieron concentraciones menores, en comparación con los grupos de jóvenes y adultos de control.
Conclusiones. Estos resultados muestran que el estrés temprano al que fueron sometidas las ratas, produjo cambios en las respuestas del eje hipotálamo-hipófisis-suprarrenal, las cuales variaron según el sexo y la edad.

Descargas

La descarga de datos todavía no está disponible.
  • Irene Riveros-Barrera Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
  • Zulma Dueñas Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia

Referencias bibliográficas

Graham AM, Pfeifer JH, Fisher PA, Carpenter S, Fair DA. Early life stress is associated with default system integrity and emotionality during infancy. J Child Psychol Psychiatry . 2015;56:12-22. http://dx.doi.org/10.1111/jcpp.12409

Klanecky AK, Woolman EO, Becker MM. Child abuse exposure, emotion regulation, and drinking refusal self- efficacy: An analysis of problem drinking in college students. Am J Drug Alcohol Abuse . 2015;41:188-96. http://dx.doi.org/10.3109/00952990.2014.998365

Pesonen AK, Räikkönen K, Feldt K, Heinonen K, Osmond C, Phillips DI, et al . Childhood separation experience predicts HPA axis hormonal responses in late adulthood: A natural experiment of World War II, Psychoneuroendocrinology. 2010;35:758-67. http://dx.doi.org/10.1016/j.psyneuen.2009.10.017

Friedman EM, Karlamangla AS, Gruenewald TL, Koretz B, Seeman TE. Early life adversity and adult biological risk profiles. Psychosom Med . 2015;77:176-85. http://dx.doi.org/10.1097/PSY.0000000000000147

Klug H, Bonsall MB. What are the benefits of parental care? The importance of parental effects on developmental rate. Ecol Evol . 2014;4:2330-51. http://dx.doi.org/10.1002/ece3.1083

Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? Front Neuroendocrinol . 2009;30:497-518. http://dx.doi.org/10.1016/j.yfrne.2009.03.003

Macrì S, Chiarotti F, Würbel H. Maternal separation and maternal care act independently on the development of HPA responses in male rats. Behav Brain Res. 2008;191: 227-34. http://dx.doi.org/10.1016/j.bbr.2008.03.031

León D, Dueñas Z. Efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta Biol Colomb. 2012;17: 129- 42.

Lehmann J, Feldon J. Long-term bio-behavioural effects of maternal separation in the rat: Consistent or confusing? Rev Neurosci. 2000;11:383-408.

Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM. Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci. 2007;25:3091-8. http://dx.doi.org/10.1111/j.1460-9568.2007.05522.x

Bautista E, Dueñas Z. Maternal separation during breastfeeding induces changes in the number of cells immunolabeled to GFAP. Psychol Neurosci. 2012;5:207-13. http://dx.doi.org/10.3922/j.psns.2012.2.11

León D, Dueñas Z. Maternal separation during breast-feeding induces gender-dependent changes in anxiety and the GABA-A receptor alpha-subunit in adult Wistar Rats. PLoS One. 2013;8:e68010. http://dx.doi.org/10.1371/journal.pone.0068010

Levay EA, Paolini AG, Govic A, Hazi A, Penman J, Kent S. HPA and sympatho-adrenal activity of adult rats perinatally exposed to maternal mild calorie restriction. Behav Brain Res. 2010;208:202-8. http://dx.doi.org/10.1016/j.bbr.2009.11.033

Caldji C, Diorio J, Meaney MJ. Variations in maternal care in infancy regulate the development of stress reactivity. Biol Psychiatry. 2000;48:1164-74. http://dx.doi.org/10.1016/S0006-3223(00)01084-2

Meaney MJ, Diorio J, Francis D, Weaver S, Yau J, Chapman K, et al . Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: The effects of thyroid hormones and serotonin. J. Neurosci. 2000;20;3926-35.

Benekareddy M, Goodfellow NM, Lambe EK, Vaidya VA. Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model of psychiatric vulnerability. J Neurosci . 2010;30:12138-50. http://dx.doi.org /10.1523/JNEUROSCI.3245-10.2010

Shea A, Walsh C, MacMillan HL, Steiner M. Child maltreatment and HPA axis dysregulation: Relationship to major depressive disorder and post-traumatic stress disorder in females. Psychoneuroendocrinology. 2004;30:162-78. http://dx.doi.org/10.1016/j.psyneuen.2004.07.001

Kole MH, Swan L, Fuchs E. The anti-depressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci. 2002;16:807-16. http://dx.doi.org/10.1046/j.1460-9568.2002.02136.x

Meijer OC, Kortekaas R, Oitzl MS, de Kloet ER. Acute rise in corticosterone facilitates 5-HT(1A) receptor-mediated behavioural responses. Eur J Pharmacol. 1998;351:7-14. http://dx.doi.org/10.1016/S0014-2999(98)00289-1

Emanuel RL, Thull DL, Girard DM, Majzoub JA. Developmental expression of corticotropin releasing hormone messenger RNA and peptide in rat hypothalamus. Peptides.1989;10:1165-9.

Riad M, García S, Watkins KC, Jodoin N, Doucet E, Langlois X, et al . Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000;417:181-94. http://dx.doi.org/10.1002/(SICI)1096-9861(20000207)417:2<181::AID-CNE4>3.0.CO;2-A

Scott LV, Dinan TG. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: Implications for the pathophysiology of depression. Life Sci.1998;62:1985- 98. http://dx.doi.org/10.1016/S0024-3205(98)00027-7

de Kloet ER, Sibug RM, Helmerhorst FM, Schmidt MV. Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev. 2005;29:271-81. http://dx.doi.org/10.1016/j.neubiorev.2004.10.008

Sapolsky RM, Meaney MJ. Maturation of the adrenocor- tical stress response: Neuroendocrine control mechanisms and the stress hypo-responsive period. Brain Res. 1986; 396:64-76.

Kendrick KM. Oxytocin, motherhood and bonding. Exp Physiol. 2000;85:111S-24. http://dx.doi.org/10.1111/j.1469-445X.2000.tb00014.x

Lonstein JS, Morrell JI. Neuroendocrinology and neurochemistry of maternal behavior and motivation. In: Blaustein JD, editor. Handbook of Neurochemistry and Molecular Biology. Berlin: Springer-Verlag; 2006. p. 1-51.

Campbell A. Attachment, aggression and affiliation: The role of oxytocin in female social behavior. Biol Psychol. 2008;77:1-10. http://dx.doi.org/10.1016/j.biopsycho.2007.09.001

Neumann ID. Brain oxytocin: A key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol. 2008;20:858-65. http://dx.doi.org/10.1111/j.1365-2826.2008.01726.x

De Kloet ER, Joëls M, Holsboer F. Stress and the brain: From adaptation to disease. Nat Rev Neurosci. 2005;6:463- 75. http://dx.doi.org/10.1038/nrn1683

Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: Data convergence from animal and human studies. Biol Psychiatry. 2015;78: 167- 77. http://dx.doi.org/10.1016/j.biopsych.2014.12.003

Scott L, Dinan T. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: Implications for the pathophysiology of depression. Life Sci. 1998;62:1985-98. http://dx.doi.org/10.1016/S0024-3205(98)00027-7

Gilman SE, Kawachi I, Fitzmaurice GM, Buka SL. Family disruption in childhood and risk of adult depression. Am J Psychiatry . 2003;160:939-46.

Papaioannou A, Gerozissis K, Prokopiou A, Bolaris S , Stylianopoulou F. Sex differences in the effects of neonatal handling on the animal´s response to stress and the vulnerability for depressive behaviour. Behav Brain Res. 2002;129:131-9. http://dx.doi.org/10.1016/S0166-4328(01)00334-5

Park MK, Hoang TA, Belluzzi JD, Leslie FM. Gender specific effect of neonatal handling on stress reactivity of adolescent rats. J Neuroendocrinol. 2003;15:289-95. http://dx.doi.org/10.1046/j.1365-2826.2003.01010.x

Duval F, González F, Rabia H. Neurobiología del estrés. Rev Chil Neuro-Psiquiatr. 2010;48:307-18. http://dx.doi.org/10.4067/S0717-92272010000500006

McQuaid R, McInnis O, Abizaid A, Anisman H. Making room for oxytocin in understanding depression. Neurosci Biobehav Rev. 2014;45:305-22. http://dx.doi.org/10.1016/j.neubiorev.2014.07.005

Uvnäs-Moberg K. Oxytocin linked antistress effects-- the relaxation and growth response. Acta Physiol Scand Suppl . 1997;640:38-42.

Nakase S, Kitayama I, Soya H, Hamanaka K, Nomura J. Increased expression of magnocellular arginin vasopressin mRNA in paraventricular nucleus of stress-induced depression-model rats. Life Sci. 1998;63:23-31. http://dx.doi.org/10.1016/S0024-3205(98)00232-X

Kirschbaum C, Kudielka B, Gaab J, Schommer N, Hellhammer D. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus- pituitary-adrenal axis. Psychosom Med. 1999;61:154-62.

Uhart M, Chong R, Oswald L, Lin P, Wand G. Gender differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity. Psychoneuroendocrinology. 2 006;31:642-52. http://dx.doi.org/10.1016/j.psyneuen.2006.02.003

Link H, Dayanithi G, Fohr K, Gratzi M. Oxytocin at physiological concentrations evokes adrenocorticotropin (ACTH) release from corticotrophs by increasing intracellular free calcium mobilized mainly from intracellular stores. Endocrinology. 1992:130:2183-91. http://dx.doi.org/10.1210/endo.130.4.1312449

Bosch OJ. Maternal aggression in rodents: Brain oxytocin and vasopressin mediate pup defense. Philos Trans R Soc Lond B Biol Sci . 2013;368:20130085. http://dx.doi.org/10.1098/rstb.2013.0085

Dinces SM, Romeo RD, McEwen BS, Tang AC. Enhancing offspring hypothalamic-pituitary-adrenal (HPA) regulation via systematic novelty exposure: The influence of maternal HPA function. Front Behav Neurosci. 2014;8:204. http://dx. doi.org/10.3389/fnbeh.2014.00204

Cómo citar
Riveros-Barrera, I., & Dueñas, Z. (2016). La separación materna durante la lactancia altera los niveles basales del sistema neuroendocrino en ratas adolescentes y adultas. Biomédica, 36(1), 67-77. https://doi.org/10.7705/biomedica.v36i1.2830
Publicado
2016-03-01
Sección
Artículos originales