Expresión diferencial entre estadios de Trypanosoma cruzi I en el aislamiento de un paciente con cardiomiopatía chagásica crónica de zona endémica de Santander, Colombia

Martha Lucía Díaz, Rodrigo Torres, Clara Isabel González, .

Palabras clave: Trypanosoma cruzi, enfermedad de Chagas, proteómica, cardiomiopatía chagásica

Resumen

Introducción. Trypanosoma cruzi es el agente causal de la enfermedad de Chagas. Durante la infección en los huéspedes mamíferos, se observan dos formas del parásito: tripomastigotes y amastigotes. En
el curso de la diferenciación del parásito cada estadio expresa un patrón de proteínas específicas de fase, las cuales son responsables de sus características morfológicas, bioquímicas y biológicas, que podrían estar determinando un papel importante en la capacidad infecciosa, virulencia y supervivencia del parásito.
Objetivo. Analizar la expresión diferencial entre los estadios tripomastigote y amastigote de un aislamiento de T. cruzi I, utilizando la electroforesis en dos dimensiones y la identificación de las
proteínas diferencialmente expresadas mediante espectrometría de masas.
Materiales y métodos. Se utilizó un clon del aislamiento MHOM/07/338 de T. cruzi I y, mediante electroforesis en dos dimensiones, se compararon los perfiles proteicos de los estadios tripomastigote
y amastigote del parásito. Las imágenes se analizaron con el software PDQuest y las proteínas diferencialmente expresadas se identificaron por MALDI TOF o LC MS/MS.
Resultados. Los geles bidimensionales mostraron un promedio de 325 manchas proteicas en cada estadio. En los análisis comparativos se detectaron 21 manchas "sobreexpresadas" en el estadio
tripomastigote y 30, en el estadio amastigote. Se seleccionaron 16 proteínas para identificación por espectrometría de masas y se clasificaron en diferentes categorías funcionales.
Conclusiones. Las proteínas exclusivas de T. cruzi relacionadas, principalmente, con metabolismo glucolítico y ensamble del citoesqueleto, fueron las que presentaron una mayor expresión diferencial
entre los estadios tripomastigote y amastigote del parásito. Estas proteínas podrían ser utilizadas para el diseño de fármacos.

Descargas

La descarga de datos todavía no está disponible.
  • Martha Lucía Díaz Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
  • Rodrigo Torres Grupo de Bioquímica y Microbiología, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
  • Clara Isabel González Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia

Citas

1. Lannes-Vieira J, De Araujo-Jorge T, Correia-Soeiro M, Gadelha P, Correa-Oliveira R. The centennial of the discovery of Chagas disease: Facing the current challenges. PLoS Negl Trop Dis. 2010;4:e645.
2. De Souza W. Basic cell biology of Trypanosoma cruzi. Curr Pharm Des. 2002;8:269-85.
3. El-Sayed N, Myler P, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309:409-15.
4. Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156:93-101.
5. Goldberg SS, Chiari E. Growth and isolation of single colonies of Trypanosoma cruzi on solid medium. J Parasitol. 1980;66:677-9.
6. Velazco C, Puentes F, Moreno A, Patarroyo M, Puerta C. Adaptación de la cepa Munantá de Trypanosoma cruzi al cultivo in vitro en células Vero. Universitas Scientiarum. 1997;4:83-94.
7. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem. 1976;72:248-54.
8. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996;68:850-8.
9. Naranjo V, Villar M, Martín-Hernando MP, Vidal D, Höfle U, Gortazar C, et al. Proteomic and transcriptomic analyses of differential stress/inflammatory responses in mandibular
lymph nodes and oropharyngeal tonsils of European wild boars naturally infected with Mycobacterium bovis. Proteomics. 2007;7:220-31.
10. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551-67.
11. Paba J, Santana JM, Teixeira AR, Fontes W, Sousa MV, Ricart CA. Proteomic analysis of the human pathogen Trypanosoma cruzi. Proteomics. 2004;4:1052-9.
12. Atwood J, Weatherly D, Minning T, Bundy B, Cavola C, Opperdoes F, et al. The Trypanosoma cruzi proteome. Science. 2005;309:473-6.
13. Zafra G, Mantilla JC, Valadares HM, Macedo AM, González CI. Evidence of Trypanosoma cruzi II infection in Colombian chagasic patients. Parasitol Res. 2008;103:731-4.
14. Vertommen D, Van Roy J, Szikora JP, Rider M, Opperdoes FR. Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Mol Biochem Parasitol. 2008;158:189-201.
15. Blumenstiel K, Schoneck R, Yardley V, Croft S, Krauth-Siegel L. Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochem Pharmacol. 1999;58:1791-9.
16. Parodi-Talice A, Monteiro-Goes V, Arrambide N, Ávila A, Durán R, Correa A, et al. Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. J Mass Spectrom. 2007;42:1422-32.
17. Schoneck R, Billaut-mui O, Numrich P, Ouaissi' MA, Krauth-Siegel R. Cloning, sequencing and functional expression of dihydrolipoamide dehydrogenase from the human pathogen Trypanosoma cruzi. Eur J Biochem. 1997;243:739-47.
18. Sreider C, Grinblat L, Stoppani A. Reduction of nitrofuran compounds by heart lipoamide dehydrogenase: Role of flavin and the reactive disulfide groups. Biochem Int. 1992;28:323-34.
19. Leroux AE, Maugeri DA, Cazzulo JJ, Nowicki C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol Biochem Parasitol. 2011;177:61-4.
20. Piacenza L, Peluffo G, Álvarez MN, Kelly JM, Wilkinson SR, Radi R. Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenouslyderived peroxynitrite. Biochem J. 2008;410:359-68.
21. Piñeyro MD, Parodi-Talice A, Portela M, Árias DG, Guerrero SA, Robello C. Molecular characterization and interactome analysis of Trypanosoma cruzi Tryparedoxin 1. J Proteomics. 2011;74:1683-92.
22. Díaz ML, Solari A, González CI. Differential expression of Trypanosoma cruzi I associated with clinical forms of Chagas disease: over expression of oxidative stress proteins in acute patient isolate. J Proteomics. 2011;74:1671-82.
23. Souto-Padron T, De Carvalho TU, Chiari E, De Souza W. Further studies on the cell surface charge of Trypanosoma cruzi. Acta Trop. 1984;41:215-25.
24. Clark AK, Kovtunovych G, Kandlikar S, Lal S, Stryker GA. Cloning and expression analysis of two novel paraflagellar rod domain genes found in Trypanosoma cruzi. Parasitol Res. 2005;96:312-20.
25. Landfear S, Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol. 2001;115:11-7.
26. Wingard J, Ladner J, Vanarotti M, Fisher A, Robinson H, Buchanan K, et al. Structural insights into membranetargeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in T. cruzi. J Biol Chem. 2008;283:23388-96.
27. Miranda G, Teixeira E, Miranda K, Weissmuller G, Mascarello P, De Souza W. Structural changes of the paraflagellar rod during flagellar beating in Trypanosoma cruzi. PLoS ONE. 2010;5:e11407.
28. Miller MJ, Wrightsman RA, Stryker GA, Manning JE. Protection of mice against Trypanosoma cruzi by immunization with paraflagellar rod proteins requires T cell, but not B cell, function. J Immunol. 1997;158:5330-7.
29. Wrightsman RA, Miller MJ, Saborio JL, Manning JE. Pure paraflagellar rod protein protects mice against Trypanosoma cruzi infection. Infect Immun. 1995;63:122-5.
30. Stebeck CE, Beecroft RP, Singh BN, Jardim A, Olafson RW, Tuckey C, et al. Kinetoplastid membrane protein-11 (KMP-11) is differentially expressed during the life cycle of African trypanosomes and is found in a wide variety of kinetoplastid parasites. Mol Biochem Parasitol. 1995;71:1-13.
31. Fuertes MA, Pérez JM, Soto M, López MC, Alonso C. Calcium-induced conformational changes in Leishmania infantum kinetoplastid membrane protein-11. J Biol Inorg Chem. 2001;6:107-17.
32. Thomas MC, García-Pérez JL, Alonso C, López MC. Molecular characterization of KMP11 from Trypanosoma cruzi: A cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol. 2000;19:47-57.
33. Diez H, López MC, Thomas M, Puerta C. KMP-11: proteína 11 de membrana de kinetoplástidos. Univérsitas Scientiarum. 2004;9:29-44.
34. Palmié-Peixoto IV, Rocha M, Urbina JA, De Souza W, Einicker-Lamas M, Machado MC. Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett. 2006;255:33-42.
35. De Vas M, Portal P, Alonso G, Schlesinger M, Flawiá M, Torres H, et al. The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway. Int J Parasitol. 2011;41:99-108.
36. Sant'Anna C, Nakayasu E, Pereira M, Lourenço D, De Souza W, Almeida IC, et al. Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics. 2009;9:1782-94.
37. van Hellemond JJ, Tielens AG. Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett. 2006;580:5552-8.
38. Urbina JA. Chemotherapy of Chagas disease: The how and the why. J Mol Med. 1999;77:332-8.
39. Silber AM, Tonelli R, Lopes C, Cunha-e-Silva N, Torrecilhas A, Schumacher R, et al. Glucose uptake in the mammalian stages of Trypanosoma cruzi. Mol Biochem Parasitol. 2009;168:102-8.
40. Nowicki C, Cazzulo JJ. Aromatic amino acid catabolism in trypanosomatids. Comp Biochem Physiol A Mol Integr Physiol. 2008;151:381-90.
41. Tielens A, Van Hellemond J. Differences in energy metabolism between Trypanosomatidae. Parasitol Today. 1998;14:265-70.
42. Maslov D, Zíkova A, Kyselova I, Lukes J. A putative novel nuclear-encoded subunit of the cytochrome C oxidase complex in trypanosomatids. Mol Biochem Parasitol. 2002;125:113-25.
43. Neboháčová M, Kim CE, Simpson L, Maslov D. RNA editing and mitochondrial activity in promastigotes and amastigotes of Leishmania donovani. Int J Parasitol. 2009;39:635-44.
44. Schneider A. Unique aspects of mitochondrial biogenesis in trypanosomatids. Int J Parasitol. 2001;31:1403-15.
45. Da silva R, Bartholomeu D,Teixeira S. Control  mechanisms of tubulin gene expression in Trypanosoma cruzi. Int J Parasitol. 2006;36:87-96.
46. González-Pino MJ, Rangel-Aldao R, Slezynger TC. Cloning and sequence analysis of a Trypanosoma cruzi a-tubulin cDNA. Biol Res. 1997;30:161-6.
Cómo citar
Díaz, M. L., Torres, R., & González, C. I. (1). Expresión diferencial entre estadios de Trypanosoma cruzi I en el aislamiento de un paciente con cardiomiopatía chagásica crónica de zona endémica de Santander, Colombia. Biomédica, 31(4), 503-13. https://doi.org/10.7705/biomedica.v31i4.400
Sección
Artículos originales