Decreased number neurons expressing GABA in the cerebral cortex of rabies-infected mice

Aura Caterine Rengifo, Orlando Torres-Fernández, .

Keywords: gamma-aminobutyric acid, neurotransmitter agents, cerebral cortex, immunohistochemistry, interneurons, rabies.

Abstract

Introduction. GABAergic neurons synthesize and release gamma-aminobutyric acid, the predominant inhibitory neurotransmitter in the brain. Certain clinical signs of rabies and previous experimental studies have suggested that rabies viral infections affect the host GABAergic system.
Objective. The effect of rabies virus infection on the expression of GABA was evaluated in neurons of the mouse cerebral cortex.
Materials and methods. Adult mice were inoculated by intramuscular injection with the standard strain of rabies (CVS virus). The animals were sacrificed in the terminal stage of the illness and perfused with 4% paraformaldehyde and 1% glutaraldehyde. Frontal sections were obtained in a Vibratome® and treated with appropriate immunohistochemical reactions for identifying the GABAergic neurons in the cerebral cortex. Counts and comparative quantitative analysis of the GABA+ neurons were compared in samples of infected and normal mice.
Results. In the animals infected with rabies virus, the distribution pattern of cortical GABAergic neurons was not changed, but their number diminished significantly. The mean value of GABA+ cells number in 1 μm2 of cerebral cortex was 293±32 in normal samples and 209±13 in infected samples. Despite the loss in GABA+ cell number, the average size of GABA+ cells per unit increased from 104±8 μm2 in normal mice to 122±10 μm2 in infected mice because the cell loss consisted more frequently of smaller neurons. Nevertheless, the rank of GABA+ cell sizes in infected samples was similar to normal samples.
Conclusion. This evidence supported the hypothesis that GABA is involved in rabies pathology.

Downloads

Download data is not yet available.
  • Aura Caterine Rengifo Laboratorio de Microscopía, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Orlando Torres-Fernández Laboratorio de Microscopía, Instituto Nacional de Salud, Bogotá, D.C., Colombia

References

1. Jackson AC. Rabies: new insights into pathogenesis and treatment. Curr Opin Neurol. 2006;19:267-70.
2. Dietzschold B, Schnell M, Koprowski H.Pathogenesis of rabies. Curr Top Microbiol Immunol. 2005;292:45-56.
3. Schneider MC, Belotto A, Adé MP, Leanes LF, Correa E, Tamayo H, et al. Epidemiologic situation of human rabies in Latin America in 2004. Epidemiol Bull.2005;26:2-4.
4. Valderrama J, García I, Figueroa G, Rico E, Sanabria J, Rocha N, et al. Brotes de rabia humana transmitida por vampiros en los municipios de Bajo y Alto Baudó, departamento del Chocó, Colombia 2004-2005. Biomédica. 2006;26:387-96.
5. Dulce A, Goenaga N. Dos casos de encefalitis rábica en el distrito de Santa Marta, departamento de Magdalena. Inf Quinc Epidemiol Nac. 2007;12:17-28.
6. Briggs DJ, Dreesen DW, Wunner WH. Vaccines. En: Jackson AC, Wunner WH, editores. Rabies. San Diego: Academic Press; 2002. p.371-400.
7. Fu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol. 2005;11:101-6.
8. Kristensson K, Dastur DK, Manghani DK, Tsiang H, Bentivoglio M. Rabies: interactions between neurons and viruses. A review of Negri inclusion bodies. Neuropathol Appl Neurobiol. 1996;22:179-87.
9. Jones EG. GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex. 1993;3:361-72.
10. DeFelipe J. Cortical interneurons: from Cajal to 2001. Prog Brain Res. 2002;136:216-38.
11. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8:562-73.
12. Bak LK, Schousboe A, Waagepetersen HS. The Glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98:641-53.
13. Olsen RW, DeLorey TM. GABA and glycine. En: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, editores. Basic neurochemistry. Molecular, cellular and medical aspects. Philadelphia: Lippincott Williams & Wilkins; 1999. p.363-82.
14. Feldman ML. Morphology of the neocortical pyramidal neuron. En: Peters A, Jones EG, editores. Cerebral cortex. Cellular components of the cerebral cortex. Vol. 1. New York: Plenum Press; 1984. p.123-200.
15. Fairén A, Smith-Fernández A, DeDiego I. Organización sináptica de neuronas morfológicamente identificadas: el método de Golgi en microscopía
electrónica. En: Armengol JA, Miñano FJ, editores. Bases experimentales para el estudio del sistema nervioso. Sevilla: Secretariado de Publicaciones de la Universidad de Sevilla; 1996. p.17-56.
16. Andressen C, Blümcke I, Celio MR. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res. 1993;271:181-208.
17. Storm-Mathisen J, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature. 1983;301:517-20.
18. Ottersen OP, Storm-Mathisen J. Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol. 1984;229:374-92.
19. Spreafico R, De Biasi S, Frassoni C, Battaglia G. A comparison of GAD- and GABA-immunoreactive neurons in the first somatosensory area (SI) of the rat cortex. Brain Res. 1988;474:192-6.
20. Isaacson RL. The neural and behavioural mechanism of aggression and their alteration by rabies and other viral infections. En: Thraenhart O, Koprowski H, Bogel HK, Sureau P, editores. Progress in rabies control.
Rochester: Wells Medical; 1989. p.17-23.
21. Ladogana A, Bouzamondo E, Pocchiari M, Tsiang H. Modification of tritiated gamma amino-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol. 1994;75:623-7.
22. Khizhniakova TM, Promyslov MS, Gorshunova LP. The influence of rabies immunization of gammaaminobutyric acid metabolism in the brains of animals.
Biull Eksp Biol Med. 1976;81:184-5.
23. Bonilla E, Ryder E, Ryder S. GABA metabolism in Venezuelan equine encephalomyelitis virus infection. Neurochem Res. 1980;5:209-15.
24. Bonilla E, Prasad AL, Estévez J, Hernández H, Arrieta A. Changes in serum and striatal free aminoacids after Venezuelan equine encephalomyelitis virus infection. Exp Neurol. 1988;99:647-54.
25. Barrett AD, Cross AJ, Crow TJ, Johnson JA, Guest AR, Dimmock NJ. Subclinical infections in mice resulting from the modulation of a lethal dose of Semliki Forest virus with defective interfering viruses: neurochemical abnormalities in the central nervous system. J Gen Virol. 1986;67:1727-32.
26. Pearce BD, Steffensen SC, Paoletti AD, Henriksen SJ, Buchmeier MJ. Persistent dentate granule cell hyperexcitability after neonatal infection with lymphocytic choriomeningitis virus. J Neurosci.1996;16:220-8.
27. Torres-Fernández O, Yepes GE, Gómez JE, Pimienta HJ. Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica. 2004;24:63-78.
28. Torres-Fernández O, Yepes GE, Gómez JE, Pimienta HJ. Calbindin distribution in cortical and subcortical brain structures of normal an rabies-infected mice. Int J Neurosci. 2005;115:1375-82.
29. DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat. 1997;14:1-19.
30. Pickel VM, Heras A. Ultrastructural localization of calbindin-D28k and GABA in the matrix compartment of the rat caudate-putamen nuclei. Neuroscience. 1996;71:167-78.
31. Prensa L, Giménez-Amaya JM, Parent A. Morphological features of neurons containing calciumbinding proteins in the human striatum. J Comp Neurol.
1998;390:552-63.
32. Amadeo A, De Biasi S, Frassoni C, Ortino B, Spreafico R. Immunocytochemical and ultrastructural study of the rat perireticular thalamic nucleus during postnatal development. J Comp Neurol. 1998;392:390-401.
33. Sarmiento L, Rodríguez G, de Serna C, Boshell J, Orozco LC. Detection of rabies virus antigens in tissue: immunoenzymatic method. Patologia. 1999;37:7-10.
34. Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin and calbindin D-28K immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol. 1998;152:278-91.
35. Valverde F. Golgi atlas of the postnatal mouse brain. Viena: Springer-Verlag; 1998.p.48-51.
36. Schefler WC. Bioestadística. México: Fondo Educativo Interamericano; 1981. p.218-21.
37. Hockfield S, Carlson S, Evans C, Levitt P, Pintar J, Silberstein L. Selected methods for antibody and nucleic acid probes. New York: Cold Spring Harbor Laboratory Press; 1993. p.111-226.
38. Meinecke DL, Peters A. GABA immunoreactive neurons in rat visual cortex. J Comp Neurol. 1987;261:388-404.
39. Ren JQ, Aika Y, Heizmann CW, Kosaka T. Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to
GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res. 1992;92:1-14.
40. Frassoni C, Radici C, Spreafico R, Curtis M. Calciumbinding protein immunoreactivity in the piriform cortex of the Guinea-Pig: selective staining of subsets of nongabaergic neurons by calretinin. Neuroscience.
1998;83:229-37.
41. Gao WJ, Newman DE, Wormington AB, Pallas SL. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic neurons. J Comp Neurol.
42. Hendry SH, Schwark HD, Jones EG, Yan J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 1987;7:1503-19.
43. Kisvárday ZF, Gulyas A, Beroukas D, North JB, Chubb IW, Somogyi P. Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. Brain 1990;113:793-812.
44. del Río MR, DeFelipe J. Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol. 1996;369:472-82.
45. del Río JA, Soriano E, Ferrer I. Development of GABAimmunoreactivity in the neocortex of the mouse. J Comp Neurol. 1992;326:501-26.
46. Esclapez M, Campistron G, Trottier S. Immunocytochemical localization and morphology of GABA-containing neurons in the prefrontal and frontoparietal cortex of the rat. Neurosci Lett.
1987;77:131-6.
47. Somogyi P, Hodgson AJ, Chubb JW, Penke B, Erdei A. Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem. 1985;33:240-8.
48. Solberg Y, White EL, Keller A. Types and distribution of glutamic acid-decarboxylase (GAD)-immunoreactive neurons in mouse motor cortex. Brain Res. 1988;459:168-72.
49. Escobar MI, Palomino JC, Arévalo M, Pimienta HJ. Dorsolateral prefrontal cortex of the owl monkey: a qualitative and quantitative Nissl and GABA immnunostaining study. Alzheimer Dis Rev. 1998;3:57-62.
50. Martin DL, Rimvall K. Regulation of ã-Aminobutyric acid synthesis in the brain. J Neurochem. 1993;60:395-407.

How to Cite
1.
Rengifo AC, Torres-Fernández O. Decreased number neurons expressing GABA in the cerebral cortex of rabies-infected mice. biomedica [Internet]. 2007 Dec. 1 [cited 2024 May 17];27(4):548-58. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/118

Some similar items:

Published
2007-12-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code