Expression of markers on dendritic cells from chronic chagasic patients stimulated with the KMP-11 protein and the K1 peptide from Trypanosoma cruzi

Sandra Paola Santander, Adriana Cuéllar, María del Carmen Thomas, Fanny Guzmán, Alberto Gómez, Manuel Carlos López, Concepción Puerta, .

Keywords: Chagas disease, Interleukin-12, Trypanosoma cruzi

Abstract

Introduction. The kinetoplastid membrane protein 11, KMP-11, from Trypanosoma cruzi elicits humoral and cellular immunity in mice that protects them from infection against further parasite challenge.
Objective. To characterize the expression of surface markers on dendritic cells from chronic chagasic patients and healthy individuals, in response to the KMP-11 protein from Trypanosoma cruzi and its N-terminal peptide K1.
Materials and methods. Monocyte-derived dendritic cells from seven chronic chagasic patients and seven healthy individuals were stimulated with the KMP-11 protein and the K1 peptide. Seven days after culturing, the CD83, CD86, and HLA-DR membrane expression as well as the production of cytokines were evaluated by flow cytometry.
Results. Neither KMP-11 protein nor K1 peptide elicited the expression of the maturation marker CD83 on dendritic cells of patients or healthy control individuals. Dendritic cells from chronic chagasic patients exposed to K1 and LPS at the same time presented a significant reduction in CD86 and CD83 membrane expression in contrast to the cells exposed to LPS alone, whereas dendritic cells from healthy individuals did not show this behavior. The secretion of interleukin-12 was decreased in the cultures of dendritic cells from chronic chagasic patients but not from healthy controls.
Conclusions. KMP-11 protein does not affect the maturation of dendritic cells, but in the presence of LPS the K1 peptide leads to a decreased expression of CD86 and CD83 as well as interleukin-12 production, This phenomenon may be associated with an impaired T cell stimulation.

Downloads

Download data is not yet available.
  • Sandra Paola Santander Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.
  • Adriana Cuéllar Laboratorio de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.
  • María del Carmen Thomas Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, España.
  • Fanny Guzmán Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Alberto Gómez Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.
  • Manuel Carlos López Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, España.
  • Concepción Puerta Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.

References

1. Revy P, Sosperda M, Barbour B, Trautmann A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat Immunol 2001;2:925-31.
2. Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A, et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I restricted T cell response. Proc Natl Acad Sci USA 2000;97:2185-90.
3. Lanzavecchia A, Sallusto F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 2001;13:291-8.
4. World Health Organization. Control of Chagas disease. Second report of the WHO Expert Committee, Technical Report 2002, Series 905. Geneva: WHO; 2002. p.39-40.
5. Moncayo A. Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries. Mem Inst Oswaldo Cruz 2003;98:577-91.
6. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M. Chagas' disease. Clin Microbiol Rev 1992;5:400-19.
7. Van Overtvelt L, Vanderheyde N, Verhasselt V, Ismaili J, De Vos L, Goldman M, et al. Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules. Infect Immun 1999;67:4033-40.
8. Van Overtvelt L, Andrieu M, Verhasselt V, Connan F, Choppin J, Vercruysse V, et al. Trypanosoma cruzi down-regulates lipopolysaccharide-induced MHC class I on human dendritic cells and impairs antigen presentation to specific CD8(+) T lymphocytes. Int Immunol 2002;14:1135-44.
9. Marañon C, Thomas MC, Planelles L, Lopez MC. The immunization of A2/K(b) transgenic mice with the KMP-11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP-11 antigen: Identification of A2-restricted epitopes. Mol Immunol 2001;38:279-87.
10. Rodrigues MM, Ribeirao M, Pereira-Chioccola V, Renia L, Costa F. Predominance of CD4 Th1 and CD8 Tc1 cells revealed by characterization of the cellular immune response generated by immunization
with a DNA vaccine containing a Trypanosoma cruzi gene. Infect Immun 1999;67:3855-63.
11. Villalta F, Lima MF, Howard SA, Zhou L, Ruíz-Ruano A. Purification of a Trypanosoma cruzi trypomastigote 60-Kilodalton surface glycoprotein that primes and activates murine lymphocytes. Infect Immun 1992;60:3025-32.
12. Planelles L, Thomas MC, Alonso C, Lopez MC. DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP-11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infect Immun 2001;69:6558-63.
13. Diez H, López MC, Thomas MC, Guzman F, Rosas F, Velazco V. et al. Evaluation of IFNg production by CD8+ T lymphocytes in response to the K1 peptide from KMP-11 protein in patients infected with
Trypanosoma cruzi. Parasite Immunol 2006;28:101-5.
14. Chaves F, Calvo JC, Carvajal C, Rivera Z, Ramirez L, Pinto M, et al. Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by
thiazolidine linkages. J Pept Res 2001;58:307-16.
15. Thomas MC, Longobardo MV, Carmelo E, Maranon C, Planelles L, Patarroyo ME, et al. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera. Clin Exp Immunol 2001;123:465-71.
16. Cuéllar A, Fonseca A, Gómez A. Efecto del lipopolisacárido en cultivos de células dendríticas humanas y su inhibición por la polimixina B. Biomédica 2004;24:413-22.
17. Modlin RL, Brightbill HD, Godowski PJ. The toll of innate immunity on microbial pathogens. N Engl J Med 1999;340:1834-5.
18. Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 2000;290:92-7.
19. Moser M, Murphy KM. Dendritic cell regulation of TH1- TH2 development. Nat Immunol 2000;1:199-205.
20. Pearce EJ, Kane CM, Sun J. Regulation of dendritic cell function by pathogen-derived molecules plays a key role in dictating the outcome of the adaptive immune response. Chem Immunol Allergy 2006;90:82-90.
21. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002;23:445-9.
22. Smits HH, Engering A, van der Kleij D, De Jong EC, Schipper K, van Capel TM, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 2005;115:1260-7.
23. Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 2001;97:3171-6.
24. Brodskyn C, Patricio J, Oliveira R, Lobo L, Arnholdt A, Mendonca-Previato L, et al. Glycoinositolphospholipids from Trypanosoma cruzi interfere with macrophages and dendritic cell responses. Infect Immun 2002;70:3736-43.
25.Ouaissi A, Guilvard E, Delneste Y, Caron G, Magistrelli G, Herbault N, et al. The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via toll-like receptor 2, and confers protection against lethal infection. J Immunol 2002;168:6366-74.
26. Jardim A, Hanson S, Ullman B, McCubbin WD, Kay CM, Olafson RW. Cloning and structure-function analysis of the Leishmania donovanni kinetoplastid membrane protein-11. Biochem J 1995;305:315-20.
27. Thomas MC, García-Pérez JL, Alonso C, López MC. Molecular characterization of KMP-11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol
2000;19:47-57.
28. Stebeck CE, Baron GS, Beecroft RP, Pearson TW. Molecular characterization of the kinetoplastid membrane protein-11 from African trypanosomes. Mol Biochem Parasitol 1996;81:81-8.
29. Diez H, López MC, Thomas MC, Guzman F, Rosas F, Velasco V, et al. Respuesta inmune al péptido K1 en pacientes infectados con Trypanosoma cruzi. Parasitol Latin 2005;60:208.
30. Hoft DF, Eickhoff CS. Type 1 immunity provides optimal protection against both mucosal and systemic Trypanosoma cruzi challenges. Infect Immun 2002;70:6715-25.
31. Kumar S, Tarleton RL. Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J Immunol 2001;166:4596-603.
32. Planelles L, Thomas MC, Marañon C, Morell M, López MC. Differential CD86 and CD40 co-stimulatory molecules and cytokine expression pattern induced by Trypanosoma cruzi in APCs from resistant or
susceptible mice. Clin Exp Immunol 2003;131:41-7.
33. Planelles L, Thomas M, Pulgar M, Marañon C, Grabbe S, López MC. Trypanosoma cruzi heat-shock protein-70 kDa, alone or fused to the parasite KMP-11 antigen, induces functional maturation of murine
dendritic cells. Immunol Cell Biol 2002;80:241-7.
34. Braun MC, Wang JM, Lahey E, Rabin RL, Kelsall BL. Activation of the formyl peptide receptor by the HIV-derived peptide T-20 suppresses interleukin-12 p70 production by human monocytes. Blood 2001;97:3531-6.
35. Kang HK, Lee HY, Kim MK, Park KS, Park YM, Kwak JY, et al. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocyte-derived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2. J Immunol 2005;175:685-92.
36. Betten A, Bylund J, Cristophe T, Boulay F, Romero A, Hellstrand K, et al. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Invest 2001;108:1221-8.
37. Hartt JK, Liang T, Sahagun-Ruiz A, Wang JM, Gao JL, Murphy PM. The HIV-1 cell entry inhibitor T-20 potently chemoattracts neutrophils by specifically activating the N-formylpeptide receptor. Biochem Biophys Res Commun 2000;272:699-704.
38. Bylund J, Christophe T, Boulay F, Nystrom T, Karlsson A, Dahlgren C. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Chemother 2001;45:1700-4.
39. Mandal P, Novotny M, Hamilton TA. Lipopolysaccharide induces formyl peptide receptor 1 gene expression in macrophages and neutrophils via transcriptional and posttranscriptional mechanisms. J
Immunol 2005;175:6085-91.
How to Cite
1.
Santander SP, Cuéllar A, Thomas M del C, Guzmán F, Gómez A, López MC, et al. Expression of markers on dendritic cells from chronic chagasic patients stimulated with the KMP-11 protein and the K1 peptide from Trypanosoma cruzi. biomedica [Internet]. 2007 Jan. 1 [cited 2024 May 18];27(1esp):18-27. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/245

Some similar items:

Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code