Prediction of sensitivity to warfarin based on VKORC1 and CYP2C9 polymorphisms in patients from different places in Colombia

Ricardo A. Cifuentes, Juan Murillo-Rojas, Esperanza Avella-Vargas, .

Keywords: Pharmacogenetics, warfarin, algorithms, genetic testing, validity of tests, ethnicity and health

Abstract

Introduction: In the search to prevent hemorrhages associated with anticoagulant therapy, a major goal is to validate predictors of sensitivity to warfarin. However, previous studies in Colombia that included polymorphisms in the VKORC1 and CYP2C9 genes as predictors reported different algorithm performances to explain dose variations, and did not evaluate the prediction of sensitivity to warfarin. Objective: To determine the accuracy of the pharmacogenetic analysis, which includes the CYP2C9 *2 and *3 and VKORC1 1639G>A polymorphisms in predicting patients’ sensitivity to warfarin at the Hospital Militar Central, a reference center for patients born in different parts of Colombia. Materials and methods: Demographic and clinical data were obtained from 130 patients with stable doses of warfarin for more than two months. Next, their genotypes were obtained through a melting curve analysis. After verifying the Hardy-Weinberg equilibrium of the genotypes from the polymorphisms, a statistical analysis was done, which included multivariate and predictive approaches. Results: A pharmacogenetic model that explained 52.8% of dose variation (p<0.001) was built, which was only 4% above the performance resulting from the same data using the International Warfarin Pharmacogenetics Consortium algorithm. The model predicting the sensitivity achieved an accuracy of 77.8% and included age (p=0.003), polymorphisms *2 and *3 (p=0.002) and polymorphism 1639G>A (p<0.001) as predictors. Conclusions: These results in a mixed population support the prediction of sensitivity to warfarin based on polymorphisms in VKORC1 and CYP2C9 as a valid approach in Colombian patients.

Downloads

Download data is not yet available.
  • Ricardo A. Cifuentes Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia Grupo Insight, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia
  • Juan Murillo-Rojas Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia
  • Esperanza Avella-Vargas Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia

References

Carlquist JF, Horne BD, Muhlestein JB, Lappe DL, Whiting BM, Kolek MJ, et al . Genotypes of the cytochrome p450 isoform, CYP2C9 , and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: A prospective study. J Thromb Thrombolysis. 2006;22: 191-7. http://dx.doi.org/10.1007/s11239-006-9030-7

Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al . Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90:625-9. http://dx.doi.org/10.1038/clpt.2011.185

Stehle S, Kirchheiner J, Lazar A, Fuhr U. Pharmacogenetics of oral anticoagulants: A basis for dose individualization. Clin Pharmacokinet. 2008;47:565-94.

Kamali F, Wynne H. Pharmacogenetics of warfarin. Annu Rev Med. 2010;61:63-75. http://dx.doi.org/10.1146/annurev.med.070808.170037

Hirsh J, Fuster V, Ansell J, Halperin JL. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation. 2003;107:1692-711. http://dx.doi.org/10.1161/01.CIR.0000063575.17904.4E

Li T, Lange LA, Li X, Susswein L, Bryant B, Malone R, et al . Polymorphisms in the VKORC1 gene are strongly associated with warfarin dosage requirements in patients receiving anticoagulation. J Med Genet. 2006;43:740-4. http://dx.doi.org/10.1136/jmg.2005.040410

Bilen O, Teruya J. Complications of anticoagulation. Dis Mon. 2012;58:440-7. http://dx.doi.org/10.1016/j.disamonth.2012.04.002

Goldstein JN, Rosand J, Schwamm LH. Warfarin reversal in anticoagulant-associated intracerebral hemorrhage. Neurocrit Care. 2008;9:277-83. http://dx.doi.org/10.1007/s12028-008-9049-z

Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al . A randomized trial of genotype- guided dosing of warfarin. N Engl J Med. 2013;369:2294-303. http://dx.doi.org/10.1056/NEJMoa1311386

Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al . Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326-31 . http://dx.doi.org/10.1038/clpt.2008.10

Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: Current status and future challenges. Pharmacogenomics J. 2007;7:99-111. http://dx.doi.org/10.1038/sj.tpj.6500417

Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 ( VKORC1 ) affects gene expression and warfarin dose requirement. Blood. 2008;112:1013-21. http://dx.doi.org/10.1182/blood-2008-03-144899

Dean L. Warfarin therapy and the genotypes CYP2C9 and VKORC1 . Medical genetics summaries. Bethesda, MD: National Center for Biotechnology Information; 2013.

Finkelman BS, Gage BF, Johnson JA, Brensinger CM, Kimmel SE. Genetic warfarin dosing: Tables versus algorithms. J Am Coll Cardiol. 2011;57:612-8. http://dx.doi.org/10.1016/j.jacc.2010.08.643

Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al . Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753-64. http://dx.doi.org/10.1056/NEJMoa0809329

Bazan NS, Sabry NA, Rizk A, Mokhtar S, Badary O. Validation of pharmacogenetic algorithms and warfarin dosing table in Egyptian patients. Int J Clin Pharm. 2012;34:837-44. http://dx.doi.org/10.1007/s11096-012-9678-3

Liang R, Li L, Li C, Gao Y, Liu W, Hu D, et al . Impact of CYP2C9 *3, VKORC1 -1639, CYP4F2rs2108622 genetic polymorphism and clinical factors on warfarin maintenance dose in Han-Chinese patients. J Thromb Thrombolysis. 2012;34:120-5. http://dx.doi.org/10.1007/s11239-012-0725-7

Salzano FM. Interethnic variability and admixture in Latin America--social implications. Rev Biol Trop . 2004;52:405-15.

Roper N, Storer B, Bona R, Fang M. Validation and comparison of pharmacogenetics-based warfarin dosing algorithms for application of pharmacogenetic testing. J Mol Diagn. 2010;12:283-91 . http://dx.doi.org/10.2353/jmoldx.2010.090110

Palacio L, Falla D, Tobón I, Mejía F, Lewis JE, Martínez AF, et al . Pharmacogenetic impact of VKORC1 and CYP2C9 allelic variants on warfarin dose requirements in a hispanic population isolate. Clin Appl Thromb Hemost. 2010;16:83-90. http://dx.doi.org/10.1177/1076029608330472

Isaza C, Beltrán L, Henao J, Porras G, Pinzón A, Vallejos A, et al . Factores genéticos y ambientales asociados con la respuesta a warfarina en pacientes colombianos. Biomédica. 2010;30:410-20 . http://dx.doi.org/10.7705/biomedica.v30i3.275

Saleh MI. Clinical predictors associated with warfarin sensitivity . Am J Ther. 2015. http://dx.doi.org/10.1097/MJT.0000000000000248

Burian M, Grosch S, Tegeder I, Geisslinger G. Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br J Clin Pharmacol. 2002;54:518-21. http://dx.doi.org/10.1046/j.1365-2125.2002.01693.x

Veenstra DL, You JH, Rieder MJ, Farin FM, Wilkerson HW, Blough DK, et al . Association of vitamin K epoxide reductase complex 1 ( VKORC1 ) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics. 2005;15:687-91.

Cifuentes RA, Barreto E. Supervised selection of single nucleotide polymorphisms in chronic fatigue syndrome. Biomédica. 2011;31:613-21 . http://dx.doi.org/10.1590/S0120-41572011000400017

Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20:2479- 81. http://dx.doi.org/10.1093/bioinformatics/bth261

Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41:343-70. http://dx.doi.org/10.2165/00003088-200241050-00003

Andrus MR. Oral anticoagulant drug interactions with statins: Case report of fluvastatin and review of the literature. Pharmacotherapy. 2004;24:285-90. http://dx.doi.org/10.1592/phco.24.2.285.33137

McKenney JM. Efficacy and safety of rosuvastatin in treatment of dyslipidemia. Am J Health Syst Pharm. 2005;62:1033-47.

Yunis JJ, Acevedo LE, Campo DS, Yunis EJ. Geno- geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from Colombia. Biomédica. 2013;33:459-67. http://dx.doi.org/10.7705/biomedica.v33i3.807

Departamento Administrativo Nacional de Estadística . Colombia una nación multicultural. Su diversidad étnica - 2007. Fecha de consulta: 14 de julio de 2015. Disponible en: https://www.dane.gov.co/files/censo2005/etnia/sys/colombia_nacion.pdf.

Flockhart DA, O´Kane D, Williams MS, Watson MS, Gage B, Gandolfi R, et al . Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med. 2008;10:139- 50. http://dx.doi.org/10.1097/GIM.0b013e318163c35f

Holbrook AM, Pereira JA, Labiris R, McDonald H, Douketis JD, Crowther M, et al . Systematic overview of warfarin and its drug and food interactions. Arch Intern Med. 2005;165:1095-106. http://dx.doi.org/10.1001/archinte.165.10.1095

Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, et al . VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost. 2005;94:773-9. http://dx.doi.org/10.1160/TH05-04-0290

Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al . Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285-93. http://dx.doi.org/10.1056/NEJMoa044503

Kadian-Dodov DL, van der Zee SA, Scott SA, Peter I, Martis S, Doheny DO, et al . Warfarin pharmacogenetics: A controlled dose-response study in healthy subjects. Vasc Med. 2013;18:290-7. http://dx.doi. org/10.1177/1358863X13503193

Nutescu E, Chuatrisorn I, Hellenbart E. Drug and dietary interactions of warfarin and novel oral anticoagulants: An update. J Thromb Thrombolysis. 2011;31:326-43. http://dx.doi.org/10.1007/s11239-011-0561-1

Chan TY. Adverse interactions between warfarin and nonsteroidal antiinflammatory drugs: Mechanisms, clinical significance, and avoidance. Ann Pharmacother. 1995;29: 1274-83.

Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: An updated systematic review. Drugs. 2009;69:1777-98. http://dx.doi.org/10.2165/11317010-000000000-00000

Motsinger-Reif AA, Wagner MJ. Clinical trial evidence of the promise of pharmacogenomics warfarin dosing algorithms. Pharmacogenomics. 2012;13:861-3. http://dx.doi.org/10.2217/pgs.12.65

Wang M, Lang X, Cui S, Fei K, Zou L, Cao J, et al . Clinical application of pharmacogenetic-based warfarin-dosing algorithm in patients of Han nationality after rheumatic valve replacement: A randomized and controlled trial. Int J Med Sci. 2012;9:472-9. http://dx.doi.org/10.7150/ijms.4637

How to Cite
1.
Cifuentes RA, Murillo-Rojas J, Avella-Vargas E. Prediction of sensitivity to warfarin based on VKORC1 and CYP2C9 polymorphisms in patients from different places in Colombia. biomedica [Internet]. 2016 Mar. 1 [cited 2024 May 17];36(1):91-100. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/2795
Published
2016-03-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code