The Golgi silver impregnation method: commemorating the centennial of the Nobel Prize in Medicine (1906) shared by Camillo Golgi and Santiago Ramón y Cajal

Orlando Torres-Fernández, .

Keywords: neuroanatomy, neurons, histological techniques, Golgi apparatus, history of medicine, Nobel Prize

Abstract

The Golgi silver impregnation technique is a simple histological procedure that reveals complete three-dimensional neuron morphology. This method is based in the formation of opaque intracellular deposits of silver chromate obtained by the reaction between potassium dichromate and silver nitrate (black reaction). Camillo Golgi, its discoverer, and Santiago Ramón y Cajal its main exponent, shared the Nobel Prize of Medicine and Physiology in 1906 for their contribution to the knowledge of the nervous system structure, Their successes were largely due to the application of the silver impregnation method. However, Golgi and Cajal had different views on the structure of nervous tissue. According to the Reticular Theory, defended by Golgi, the nervous system was formed by a network of cells connected via axons within a syncytium. In contrast, Cajal defended the Neuron Doctrine which maintained that the neurons were independent cells. In addition, Golgi had used a variant of his "black reaction" to discover the cellular organelle that became known as the Golgi apparatus. Electron microscopy studies confirmed the postulates of the Neuron Doctrine as well as the existence of the Golgi complex and contributed to a resurgence of use of the Golgi stain. Although modern methods of intracellular staining reveal excellent images of neuron morphology, the Golgi technique is an easier and less expensive method for the study of normal and pathological morphology of neurons.

Downloads

Download data is not yet available.
  • Orlando Torres-Fernández Laboratorio de Microscopía, Instituto Nacional de Salud, Bogotá D.C., Colombia.

References

1. DeFelipe J, Jones EG. Santiago Ramón y Cajal and methods in neurohistology. Trends Neurosci 1992;15:237-46.
2. López-Piñero JM. Cajal y la estructura histológica del sistema nervioso. Investigación y Ciencia 1993;197:6-13.
3. Mazzarello P. Camillo Golgi's scientific biography. J Hist Neurosci 1999;8:121-31.
4. Pannese E. The Golgi stain: invention, diffusion and impact on neurosciences. J Hist Neurosci 1999;8:132-40.
5. Mörner KA. The Nobel Prize in physiology or medicine 1906. Presentation speech. En: Nobel Foundation, editor. Nobel lectures in physiology or medicine 1901-1921. Amsterdam: Elsevier Publishing Company;1967.
6. Grant G. How Golgi shared the 1906 Nobel Prize in physiology or medicine with Cajal. [Consultado: junio 11 de 2006]. Disponible en: http://nobelprize.org/nobel_prizes/medicine/articles/grant/index.html
7. Corral-Corral I, Corral-Corral C, Corral-Castañedo A. Cajal's views on the Nobel Prize for physiology and medicine (October 1904). J Hist Neurosci 1998;7:43-9.
8. Shepard GM. The legacy of Camillo Golgi for modern concepts of brain organization. J Hist Neurosci 1999;8:209-14.
9. DeFelipe J. Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends Neurosci 2002;25:481-4.
10. Fairén A, Smith-Fernández A, DeDiego I. Organización sináptica de neuronas morfológicamente identificadas: el método de Golgi en microscopía electrónica. En: Armengol JA, Miñano FJ, editores. Bases experimentales para el estudio del sistema nervioso. Vol 1. Sevilla: Secretariado de Publicaciones de la Universidad de Sevilla; 1996. p.17-56.
11. Ramón-Moliner E. The Golgi-Cox technique. En: Nauta WJ, Ebbesson SO, editores. Contemporary research methods in neuroanatomy. New York: Springer-Verlag; 1970. p.32-55.
12. Grant G. Gustaf Retzius and Camillo Golgi. J Hist Neurosci 1999;8:151-63.
13. Millhouse OE. The Golgi methods. En: Heimer L, Robards MJ, editores. Neuroanatomical tract-tracing methods 1. New York: Plenum Press; 1981. p.311-44.
14. Golgi C. On the structure of nerve cells. 1898. J Microsc 1989;155:3-7.
15. Scheibel ME, Scheibel AB. The rapid Golgi method. Indian summer or renaissance? En: Nauta WJ, Ebbesson SO, editores. Contemporary research methods in neuroanatomy. New York: Springer-Verlag; 1970. p.1-11.
16. Fernández N, Breathnach CS. Luis Simarro Lacabra (1851-1921): from Golgi to Cajal through Simarro, via Ranvier? J Hist Neurosci 2001;10:19-26.
17. García-Albea E. Luis Simarro: precursor de la neurología española y Gran Maestre de la masonería. Rev Neurol 2001;32:990-3.
18. Jones EG. History of cortical cytology. En: Peters A, Jones EG, editores. Cerebral cortex. Vol.1. Cellular components of the cerebral cortex. New York: Plenum Press; 1984. p.1-32.
19. Jones EG. The neuron doctrine 1891. J Hist Neurosci 1994;3:3-20.
20. Jones EG. Golgi, Cajal and the neuron doctrine. J Hist Neurosci 1999;8:170-8.
21. Golgi C. The neuron doctrine - theory and facts. Nobel Lecture December 11, 1906. [Consultado: junio 11 de 2006]. Disponible en: http://nobelprize.org/nobel_prizes/medicine/laureates/1906/golgi-lecture.pdf
22. Ramón y Cajal S. The structure and connections of neurons. Nobel Lecture December 12, 1906. [Consultado: junio 11 de 2006]. Disponible en: http://nobelprize.org/nobel_prizes/medicine/laureates/1906/cajal-lecture.pdf
23. Ramón y Cajal S. ¿Neuronismo o reticularismo? Las pruebas objetivas de la unidad anatómica de las células nerviosas. Arch Neurobiol (Madrid) 1933;13:1-144.
24. Peters A, Palay SL, Webster H. The fine structure of the nervous system. Neurons and their supporting cells. New York: Oxford University Press; 1991.
25. Bennett MV. Neoreticularism and neuronal polarization. Prog Brain Res 2002;136:189-201.
26. Bentivoglio M. 1898: the Golgi apparatus emerges from nerve cells. Trends Neurosci 1998;21:195-200.
27. Golgi C. On the structure of the nerve cells of the spinal ganglia. J Microsc 1989;155:9-14.
28. Martínez-Tello FJ. La escuela de Cajal. La creación del primer servicio de anatomía patológica en España por D. Francisco Tello. Revista Española de Patología 2002;35:1-6.
29. Lorente de Nó R. The cerebral cortex: architecture, intracortical connections and motor projections. En: Fulton JF, editor. Physiology of the nervous system. London: Oxford University Press; 1938. p.291-325.
30. Nieuwenhuys R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol 1994;190:307-37.
31. Colonnier M. The tangential organization of the visual cortex. J Anat 1964;98:327-44.
32. Vaisamruat V, Hess A. Golgi impregnation after formalin fixation. Stain Technol 1953;28:303-4.
33. Valverde F. The Golgi method. A tool for comparative structural analyses. En: Nauta WJ, Ebbesson SO, editores. Contemporary research methods in neuroanatomy. New York: Springer-Verlag; 1970. p.12.
34. Blackstad TW. Electron microscopy of Golgi preparations for the study of neuronal relations. En: Nauta WJ, Ebbesson SO, editores. Contemporary research methods in neuroanatomy. New York: Springer-Verlag; 1970. p.186-216.
35. Merico G. Microscopy in Camillo Golgi's times. J Hist Neurosci 1999;8:113-20.
36. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988;10:128-38.
37. Boyde A. Three-dimensional images of Ramón y Cajal's original preparations, as viewed by confocal microscopy. Trends Neurosci 1992;15:246-8.
38. Malach R. Dendritic sampling across processing streams in monkey striate cortex. J Comp Neurol 1992;315:303-12.
39. Castano P, Marcucci A, Miani A Jr, Morini M, Veraldi S, Rumio C. Central and peripheral nervous structures as seen at the confocal scanning laser microscope. J Microsc 1994;175:229-37.
40. Castano P, Gioia M, Barajon I, Rumio C, Miani A. A comparison between rapid Golgi and Golgi-Cox impregnation methods for 3-D reconstruction of neurons at the confocal scanning laser microscope. Ital J Anat Embryol 1995;100(Suppl. 1):613-22.
41. Freire M, Boyde A. Stereoscopic and biplanar microphotography of Golgi-impregnated neurons: a correlative study using conventional and real-time, direct-image confocal microscopies. J Neurosci Methods 1995;58:109-16.
42. Frotscher M. Application of the Golgi/electron microscopy technique for cell identification in immunocytochemical, retrograde labeling, and developmental studies of hippocampal neurons.
Microsc Res Techn 1992;23:306-23.
43. Stell WK. Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat Rec 1965;153:389-97.
44. Stell WK. The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer J Anat 1967;121:401-24.
45. Blackstad TW. Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z Zellforsch Mikrosk Anat 1965;67:819-34.
46. Blackstad TW. Electron microscopy of experimental axon degeneration in photochemically modified Golgi preparations: a procedure for precise mapping of nervous connections. Brain Res 1975;95:191-210.
47. Fairén A, Peters A, Saldanha J. A new procedure for examining Golgi impregnated neurons by light and electron microscopy. J Neurocytol 1977;6:311-37.
48. Fairén A. Pioneering a golden age of cerebral microcircuits: the births of the combined Golgi-electron microscope methods. Neuroscience 2005;36:607-14.
49. Fairén A, DeFelipe J, Martínez-Ruiz R. The Golgi-EM procedure: a tool to study neocortical interneurons. En: Acosta E, Federoff S, editores. Glial and neuronal cell biology. New York: Alan R Liss, Inc.; 1981. p. 291-301.
50. DeFelipe J, Fairén A. Synaptic connections of an interneuron with axonal arcades in the cat visual cortex. J Neurocytol 1988;17:313-23.
51. DeFelipe J, Fairén A. A simple and reliable method for correlative light and electron microscopic studies. J Histochem Cytochem 1993;41:769-72.
52. Freund TF, Somogyi P. The section-Golgi impregnation procedure.1. Description of the method and its combination with histochemistry after intercellular iontophoresis or retrograde transport of horseradish peroxidase. Neuroscience 1983;9:463-74.
53. Gabbott PL, Somogyi J. The ‘single' section Golgi impregnation procedure: methodological description. J Neurosci Methods 1984;11:221-30.
54. Izzo PN, Graybiel AM, Bolam JP. Characterization of substance P and (Met)enkephalin-immunoreactive neurons in the caudate nucleus of cat and ferret by single section Golgi procedure. Neuroscience 1987;20:577-87.
55. Angulo A, Fernández E, Merchán JA, Molina M. A reliable method for Golgi staining of retina and brain slices. J Neurosci Methods 1996;66:55-9.
56. Freund TF, Somogyi P. Synaptic relationships of Golgi-impregnated neurons as identified by electrophysiological or immunocytochemical techniques. En: Heimer L, Záborszky L, editores. Neuroanatomical tract-tracing methods 2. Recent progress. New York: Plenum Press; 1989. p.201-38.
57. Freund TF. Golgi impregnation combined with pre- and post-embedding immunocytochemistry. En: Cuello AC, editor. Immunohistochemistry II. Chichester: John Willey & Sons; 1993. p.349-67.
58. López-García C, Nácher J. Las células del tejido nervioso: neuronas y células gliales. En: Delgado JM, Ferrús A, Mora F, Rubia F, editores. Manual de Neurociencia. Madrid: Editorial Síntesis; 1998. p.59-93.
59. Valverde F. Golgi atlas of the postnatal mouse brain. Viena: Springer-Verlag; 1998.
60. Valverde F. Estructura de la corteza cerebral. Organización intrínseca y análisis comparativo. Rev Neurol 2002;34:758-80.
61. Gibb R, Kolb B. A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 1998;79:1-4.
62. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004;161:742-4.
63. Sa MJ, Madeira MD, Ruela C, Volk B, Mota-Miranda A, Paula-Barbosa MM. Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol 2004;107:97-110.
64. Baloyannis SJ. Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer's disease: a Golgi and electron microscope study. Int J Neurosci 2005;115:965-80.
65. Marin-Padilla M, Tsai RJ, King MA, Roper SN. Alterated corticogenesis and neuronal morphology in irradiation-induced cortical dysplasia: a Golgi-Cox study. J Neuropathol Exp Neurol 2003;62:1129-43.
66. Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 2004;60:236-48.
67. Martínez-Téllez R, Gómez-Villalobos M de J, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by steptozotocin. Brain Res 2005;1048:108-15.
68. Rosoklija G, Mancevski B, Ilievski B, Perera T, Lisanby SH, Coplan JD, et al. Optimization of Golgi methods for impregnation of brain tissue from humans and monkeys. J Neurosci Methods 2003;131:1-7.
69. Zhang H, Weng SJ, Hutsler JJ. Does microwaving enhance the Golgi methods? A quantitative analysis of disparate staining patterns in the cerebral cortex. J Neurosci Methods 2003;124:145-55.
70. Moss TL, Whetsell WO. Techniques for thick-section Golgi impregnation of formalin-fixed brain tissue. Methods Mol Biol 2004;277:277-85.
71. Friedland DR, Los JG, Ryugo DK. A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Methods 2006;150:90-5.
How to Cite
1.
Torres-Fernández O. The Golgi silver impregnation method: commemorating the centennial of the Nobel Prize in Medicine (1906) shared by Camillo Golgi and Santiago Ramón y Cajal. biomedica [Internet]. 2006 Dec. 1 [cited 2024 May 18];26(4):498-50. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/315
Published
2006-12-01
Section
History

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code