Differential expression of proteins in Leishmania (Viannia) panamensis associated with mechanisms of resistance to meglumine antimoniate

Ronald Guillermo Peláez, Carlos Enrrique Muskus, Patricia Cuervo, Marcel Marín-Villa, .

Abstract

Introduction. The well-known drug resistance mechanisms to pentavalent antimony have beenwidely described in strains of the Leishmania subgenus, but little is known about the mechanisms ofresistance and the proteins associated with it in strains of the Viannia subgenus such as Leishmaniapanamensis.

Objective. Differentially expressed proteins were identified between pentavalent antimonial sensitiveand resistant L. panamensis (UA140) strains, and the role of these proteins was analyzed as possibleresistance mechanisms.

Materials and methods. The protein lysates of pentavalent antimony sensitive and resistant strainswere separated by two-dimensional gel electrophoresis, and the protein patterns compared. Theproteins identified as overexpressed were separated and analyzed using MALDI-TOF/TOF (MatrixAssisted Laser Desorption Ionization/Time of Flight). The level of mRNA expression of five of theseproteins was quantified using real-time PCR.

Results. On the 2-dimensional gels, 532 ± 39 protein spots were identified for the sensitive strains,and 541 ± 43 spots for the resistant strains. Ten spots were overexpressed in the resistant strain andidentified as heat shock protein (Hsp60 mitochondrial, Hsp70 cytosolic and mitochondrial), disulfideisomerase, cysteine protease, enolase, elongation factor 5-alpha, the proteasome alpha-5 subunit andtwo hypothetical proteins named as Sp(2) and Sp(25).

Conclusion. This is the first proteomic study conducted with a L. panamensis resistant strain whereseveral proteins were identified and related with the parasite resistance mechanism to pentavalentantimony. This opens the way for future studies aimed at modulating the drug resistance or at evaluatingthese proteins as therapeutic targets.

doi: http://dx.doi.org/10.7705/biomedica.v32i3.392

Downloads

Download data is not yet available.
  • Ronald Guillermo Peláez Programa de Estudio y Control de Enfermedades Tropicales, PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
  • Carlos Enrrique Muskus Programa de Estudio y Control de Enfermedades Tropicales, PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
  • Patricia Cuervo Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brasil
  • Marcel Marín-Villa Programa de Estudio y Control de Enfermedades Tropicales, PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia

References

WHO. Control of the leishmaniases: Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, March 22-26, 2010. WHO technical report series.

Geneva: WHO; 2010. p. 1-202.

Desjeux P. Leishmaniasis: Current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305-18. http://dx.doi.org/10.1016/j.cimid.2004.03.004

Davies CR, Kaye P, Croft SL, Sundar S. Leishmaniasis: New approaches to disease control. BMJ. 2003;326:377-82. http://dx.doi.org/10.1136/bmj.326.7385.377

Requena JM, Iborra S, Carrion J, Alonso C, Soto M. Recent advances in vaccines for leishmaniasis. Expert Opin Biol Ther. 2004;65:1505-17. http://dx.doi.org/10.1517/14712598.4.9.1505

Rocha RA, Sampaio RN, Guerra M, Magalhaes A, Cuba CC, Barreto AC, et al. Apparent glucantime failure in five patients with mucocutaneous leishmaniasis. Am J Trop Med Hyg. 1980;83:131-9.

El-Masum MA, Evans DA. Characterization of Leishmania isolated from patients with Kala-azar and post Kala-azar dermal leishmaniasis in Bangladesh. Trans R Soc Trop Med

Hyg. 1995;89:331-2.

Bonfante GR, Barroeta S, Mejía de los Alejos MA, Meléndez E, Torrealba J, Valdivia O, et al. Disseminated American cutaneous leishmaniasis. Int J Dermatol. 1996;35:561-5.

Costa JM, Marsden PM, Llanos-Cuentas EA, Netto EM, Carvalho EM, Barral A, et al. Disseminated cutaneous leishmaniasis in a field clinic in Bahia, Brazil: A report of eight cases. J Trop Med Hyg. 1986;89:319-23.

Ribeiro RN, Marsden PD. Mucosal leishmaniasis unresponsive to glucantime therapy successfully treated with AmBisomeTM. Trans R Soc Trop Med Hyg. 1997;91:77.

Vélez I, Agudelo S, Hendrickx E, Puerta J, Grogl M, Modabber F, et al. Inefficacy of allopurinol as monotherapy for Colombian cutaneous leishmaniasis: A randomized, controlled trial. Ann Intern Med. 1997;126:232-6.

Palacios R, Osorio LE, Grajalew LF, Ochoa MT. Treatment failure in children in a randomized clinical trial with 10 and 20 days of meglumine antimonate for cutaneous leishmaniasis due to Leishmania Viannia species. Am J Trop Med Hyg. 2001;64:187-93.

Rojas R, Valderrama L, Valderrama M, Varona MX, Ouellette M, Saravia NG. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis. 2006;193:1375-83. http://dx.doi.org/10.1086/503371

Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, Marty P, Michel G, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: A study of

strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother. 1997;41:827-30.

Lira R, Sundar S, Makharia A, Kenney R, Gam A, Saraiva E, et al. Evidence that the high incidence of treatment failures in Indian Kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis. 1999;180:564-7. http://dx.doi.org/10.1086/314896

Moreira ES, Guerra JB, Petrilló-Peixoto M de L. Glucantime resistant Leishmania promastigotes are sensitive to pentostam. Rev Soc Bras Med Trop. 1992;25:247-50.

Grogl M, Thomason TN, Franke ED. Drug resistance in leishmaniasis: Its implication in systemic chemotherapy of cutaneous and mucocutaneous disease. Am J Trop Med Hyg. 1992;47:117-26.

Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre J. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother. 2001;45:2064-9. http://dx.doi.org/10.1128/AAC.45.7.2064-2069.2001

Croft SL, Coombs GH. Leishmaniasis –current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502-8. http://dx.doi.org/10.1016/j.pt.2003.09.008

Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279:39925-32. http://dx.doi.org/10.1074/jbc.M405635200

Berman JD, Waddel D, Hanson BD. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1985;27:916-20.

Berman JD, Gallalee JV, Best JM. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway and fatty acid beta-oxidation in Leishmania

mexicana amastigotes. Biochem Pharmacol. 1987;36:197-201. http://dx.doi.org/10.1016/0006-2952(87)90689-7

Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant

homologue: Effect on parasite intracellular survival. Proc Natl Acad Sci. 1998;95:5311-6.

Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111-26. http://dx.doi.org/10.1128/CMR.19.1.111-126.2006

Muñoz DL, Cardona DP, Cardona A, Carrillo LM, Quiñones W, Echeverri F, et al. Effect of hydrazones against intracellular amastigotes of Leishmania panamensis and a parasitic cystein protease. Vitae. 2006;12:5-12.

Cuervo P, Batista de Jesus J, Junqueira M, Mendonça-Lima L, Gonzalez LJ, Betancourt L, et al. Proteome analysis of Leishmania (Viannia) braziliensis by twodimensional gel electrophoresis and mass spectrometry. Mol Biochem Parasitol. 2007;154:6-21. http://dx.doi.org/10.1016/j.molbiopara.2007.03.013

Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988;9:255-62. http://dx.doi.org/10.1002/elps.1150090603

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research. 2001;29:2002-7.

Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6:849-54. http://dx.doi.org/10.1046/j.1365-3156.2001.00778.x

Grondin K, Roy G, Ouellette M. Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol Cell Biol. 1996;16:3587-95.

Haimeur A, Ouellete M. Gene amplification in Leishmania tarentolae selected for resistance to sodium stibogluconate. Antimicrob Agent Chemoter. 1998;42:1689-94.

Haimeur A, Brochu C, Genest P, Papadopoulou B, Ouellette M. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol. 2000;108:131-5. http://dx.doi.org/10.1016/S0166-6851(00)00187-0

Kumar A, Sisodia B, Misra P, Sundar S, Shasany AK, Dube A. Proteome mapping of overexpressed membraneenriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovani. Br J Clin Pharmacol. 2010;70:609-17. http://dx.doi.org/10.1111/j.1365-2125.2010.03716.x

Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi H. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 2002;9:53-64. http://dx.doi.org/10.1038/sj/cdd/4400952

Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem. 2003;278:25120-32. http://dx.doi.org/10.1074/jbc.M301975200

Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen, JC. On the evolution of programmed cell death: Apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ. 2002;9:65-81. http://dx.doi.org/10.1038/sj/cdd/4400951

Zangger H, Mottram JC, Fasel N. Cell death in Leishmania induced by stress and differentiation: Programmed cell death or necrosis? Cell Death Diff. 2002;9:1126-39. http://dx.doi.org/10.1038/sj.cdd.4401071

Brochu C, Haimeur A, Ouellette M. The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones. 2004;9:294-303. http://dx.doi.org/10.1379/CSC-15R1.1

Baptiste V, Benjamin G, Isabelle G, Sundar S, Drummelsmith J, Ouellette M. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics. 2007;6:88-101. http://dx.doi.org/10.1074/mcp.M600319-MCP200

Wardleworth BN, Russell RJ, Bell SD, Taylor GL, White MF. Structure of Alba: An archaeal chromatin protein modulated by acetylation. EMBO J. 2002;21:4654-62. http:// dx.doi.org/10.1093/emboj/cdf465

Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science. 2002;296:148-51. http://dx.doi.org/10.1126/science.1070506

Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Third edition. Oxford: Oxford University Press; 1999. p. 1-899.

How to Cite
1.
Peláez RG, Muskus CE, Cuervo P, Marín-Villa M. Differential expression of proteins in Leishmania (Viannia) panamensis associated with mechanisms of resistance to meglumine antimoniate. biomedica [Internet]. 2012 May 2 [cited 2024 May 16];32(3):418-29. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/392
Published
2012-05-02
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code