Circulating zinc levels and cardiometabolic risk-related variables in adults

Milton Fabián Suárez-Ortegón, Alejandra Arbeláez, José Guillermo Ortega-Ávila, Mildrey Mosquera, .

Keywords: Zinc, heart disease risk factors, triglycerides, micronutrients

Abstract

Introduction. Altered serum zinc levels, lower and higher than values in healthy controls, have been observed in individuals affected by non-communicable chronic diseases. However, to date, studies describing potential determinants of zinc levels in general populations free of chronic diseases appear to be limited.
Objective. To evaluate whether nutrient intake, biochemical and clinical measures, lifestyle, and family history of cardio-metabolic diseases are independently associated with zinc levels in apparently healthy individuals.
Materials and methods. We evaluated 239 healthy subjects. Serum zinc was measured via flame atomic absorption spectrometry, and the remaining biochemical markers were assessed using enzymatic colorimetric methods. Standard techniques were employed to quantify waist circumference, height, and weight. Body fat was measured via bioimpedance, and blood pressure was measured using digital sphygmomanometers. We applied a survey to record the personal and family history of non-communicable chronic diseases, and nutrient intake was estimated using the 24-hour recall method.
Results. Women had lower serum zinc levels than men. In multivariate analyzes, total fat intake (β = -0.15; standard error = 0.03; p < 0.001), plasma log-triglycerides (β = -10.18; standard error = 3.9; p = 0.010), and female gender (β = -6.81; standard error = 3.3; p = 0.043) were significant predictors for serum zinc levels. Zinc intake was not significantly related to serum zinc in univariate and multivariate analyses.
Conclusions. Variables related to cardiometabolic risk, such as plasma triglyceride levels and total fat intake, were associated with serum zinc levels in individuals without a diagnosis of chronic or infectious/inflammatory diseases. Further studies are required to confirm our findings and to evaluate possible biological mechanisms for these relationships.

Downloads

Download data is not yet available.
  • Milton Fabián Suárez-Ortegón Departamento de Alimentación y Nutrición, Facultad de Ciencias de La Salud, Pontificia Universidad Javeriana, Seccional Cali, Cali, Colombia
  • Alejandra Arbeláez Grupo de Nutrición, Universidad del Valle, Cali, Colombia
  • José Guillermo Ortega-Ávila Departamento de Ciencias Básicas, Facultad de Ciencias de La Salud, Pontificia Universidad Javeriana, Seccional Cali, Cali, Colombia
  • Mildrey Mosquera Grupo de Nutrición, Universidad del Valle, Cali, Colombia; Departamento de Ciencias Fisiológicas, Universidad del Valle, Cali, Colombia

References

Baltaci AK, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins. Biol Trace Elem Res. 2018;183:22-31. https://doi.org/10.1007/s12011-017-1119-7

Fernández-Cao JC, Warthon-Medina M, Moran VH, Arija V, Doepking C, Serra-Majem L, et al. Zinc intake and status and risk of type 2 diabetes mellitus: A systematic review and metaanalysis. Nutrients. 2019;11:1027. https://doi.org/10.3390/nu11051027

Hennigar SR, Lieberman HR, Fulgoni 3rd VL, McClung JP. Serum zinc concentrations in the US population are related to sex, age, and time of blood draw but not dietary or supplemental zinc. J Nutr. 2018;148:1341-51. https://doi.org/10.1093/jn/nxy105

Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr. 1998;17:109-15. https://doi.org/10.1080/07315724.1998.10718735

Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: An update. Diabetol Metab Syndr. 2010;2:70. https://doi.org/1010.1186/1758-5996-2-70

Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition. 2010;26:1050-7. https://doi.org/10.1016/j.nut.2010.03.007

Lohman TG. Applicability of body composition techniques and constants for children and youths. Exerc Sport Sci Rev. 1986;14:325-57.

Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Books; 1988.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of LDL in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499-502.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-9. https://doi.org/10.1007/BF00280883

Smith JCJ, Butrimovitz GP, Purdy WC. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem. 1979;25:1487-91.

Quintero S, Escobar E. Tabla de composición de alimentos. Segunda edición. Medellín: Centro de Atención Nutricional de Antioquia; 2001.p. 107.

Lang TA, Secic M. How to report statistics in medicine: Annotated guidelines for authors, editors, and reviewers. Philadelphia: ACP Press; 2006.

Laitinen R, Vuori E, Viikari J. Serum zinc and copper: Associations with cholesterol and triglyceride levels in children and adolescents. Cardiovascular risk in young Finns. J Am Coll Nutr. 1989;8:400-6. https://doi.org/10.1080/07315724.1989.10720314

Tully CL, Snowdon DA, Belcher JD. Serum zinc and plasma lipoproteins in elderly women: Findings from the nun study. J Trace Elem Exp Med. 1996;4:201-9. https://doi.org/10.1002/(SICI)1520-670X(199605)8:4<201::AID-JTRA2>3.0.CO;2-P

He JA, Tell GS, Tang YC, Mo PS, He GQ. Relation of serum zinc and copper to lipids and lipoproteins: The Yi People Study. J Am Coll Nutr. 1992;11:74-8. https://doi.org/10.1080/07315724.1992.10718199

Norouzi S, Adulcikas J, Sohal SS, Myers S. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One. 2018;13:e0191727. https://doi.org/10.1371/journal.pone.0191727

De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146:4192-9. https://doi.org/10.1210/en.2004-1520

Tapiero H, Tew KD. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed Pharmacother. 2003;57:399-411. https://doi.org/10.1016/s0753-3322(03)00081-7

Xiao X, Li H, Qi X, Wang Y, Xu C, Liu G, et al. Zinc alpha 2 glycoprotein alleviates palmitic acid-induced intracellular lipid accumulation in hepatocytes. Mol Cell Endocrinol. 2017;439:155-64. https://doi.org/10.1016/j.mce.2016.06.003

Mariani E, Cornacchiola V, Polidori MC, Mangialasche F, Malavolta M, Cecchetti R, et al. Antioxidant enzyme activities in healthy old subjects: Influence of age, gender and zinc status. Biogerontology. 2006;7:391-8. https://doi.org/10.1007/s10522-006-9054-6

Andriollo-Sanchez M, Hininger-Favier I, Meunier N, Toti E, Zaccaria M, Brandolini-Bunlon M, et al. Zinc intake and status in middle-aged and older European subjects: The ZENITH study. Eur J Clin Nutr. 2005;59 (Suppl. 2):S37-41. https://doi.org/10.1038/sj.ejcn.1602296

Romero CD, Sánchez PH, Blanco FL, Rodríguez Rodríguez E, Serra Majem L. Serum copper and zinc concentrations in a representative sample of the Canarian population. J Trace Elem Med Biol. 2002;16:75-81. https://doi.org/10.1016/s0946-672x(02)80032-3

Schumacher M, JL D, Corbella J. Zinc and copper levels in serum and urine: Relationship to biological, habitual and environmental factors. Sci Total Environ. 1994;148:67-72. https://doi.org/10.1016/0048-9697(94)90376-x

Brown KH, Peerson JM, Rivera J, Allen LH. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am J Clin Nutr. 2002;75:1062-71. https://doi.org/10.1093/ajcn/75.6.1062

Wood RJ. Assessment of marginal zinc status in humans. J Nutr. 2000;130 (Suppl. 5):S1350-4. https://doi.org/10.1093/jn/130.5.1350S

Hyun TH, Barrett-Connor E, Milne DB. Zinc intakes and plasma concentrations in men with osteoporosis: The Rancho Bernardo Study. Am J Clin Nutr. 2004;80:715-21. https://doi.org/10.1093/ajcn/80.3.715

Bogden JD, Oleske JM, Lavenhar MA, Munves EM, Kemp FW, Bruening KS, et al. Zinc and immunocompetence in elderly people: Effects of zinc supplementation for 3 months. Am J Clin Nutr. 1988;48:655-63. https://doi.org/10.1093/ajcn/48.3.655

Gunasekara P, Hettiarachchi M, Liyanage C, Lekamwasam S. Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab Syndr Obes. 2011;26:53-60. https://doi.org/10.2147/DMSO.S16691

Schölmerich J, Freudemann A, Köttgen E, Wietholtz H, Steiert B, Löhle E, et al. Bioavailability of zinc from zinc-histidine complexes. I. Comparison with zinc sulfate in healthy men. Am J Clin Nutr. 1987;45:1480-6. https://doi.org/10.1093/ajcn/45.6.1480

Solomons NW, Romero-Abal ME, Weiss G, Michalke B, Schumann K. Bioavailability of zinc from NutriSet zinc tablets compared with aqueous zinc sulfate. Eur J Clin Nutr. 2011;65:125- 31. https://doi.org/10.1038/ejcn.2010.198

Jimenez-Mora MA, Nieves-Barreto LD, Montano-Rodriguez A, Betancourt-Villamizar EC, Mendivil CO. Association of overweight, obesity and abdominal obesity with socioeconomic status and educational level in Colombia. Diabetes Metab Syndr Obes Targets Ther. 2020;13:1887-98. https://doi.org/10.2147/DMSO.S244761

How to Cite
1.
Suárez-Ortegón MF, Arbeláez A, Ortega-Ávila JG, Mosquera M. Circulating zinc levels and cardiometabolic risk-related variables in adults. biomedica [Internet]. 2024 May 31 [cited 2024 Jul. 21];44(Sp. 1):63-72. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6882
Published
2024-05-31

Altmetric

Funding data

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code