Prevalence of resistance to macrolides and aminoglycosides in Mycobacterium avium, M. abscessus, and M. chelonae identified in the Laboratorio Nacional de Referencia of Colombia from 2018 to 2022

Claudia Llerena, Yanely Angélica Valbuena, Angie Paola Zabaleta, Angélica Nathalia García, .

Keywords: Non-tuberculous mycobacteria, Mycobacterium infections, Mycobacterium avium, Mycobacterium chelonae, Mycobacterium abscessus, macrolides, aminoglycosides, therapeutics, diagnosis

Abstract

Introduction. The Mycobacterium chelonae species and the M. avium and M. abscessus complexes are emerging pathogens that cause mycobacteriosis. Treatment depends
on the species and subspecies identified. The drugs of choice are macrolides and aminoglycosides. However, due to the resistance identified to these drugs, determining
the microbe’s sensitivity profile will allow clinicians to improve the understanding of the prognosis and evolution of these pathologies.
Objective. To describe the macrolide and aminoglycoside susceptibility profile of cultures identified by Colombia’s Laboratorio Nacional de Referencia de Mycobacteria from 2018 to 2022, as Mycobacterium avium complex, M. abscessus complex, and M. chelonae.
Materials and methods. This descriptive study exposes the susceptibility profile to macrolides and aminoglycosides of cultures identified as M. avium complex, M. abscessus complex, and M. chelonae using the GenoType® NTM-DR method.
Results. We identified 159 (47.3 %) cultures as M. avium complex, of which 154 (96.9 %) were sensitive to macrolides, and 5 (3.1 %) were resistant; all were sensitive to aminoglycosides. From the 125 (37.2 %) cultures identified as M. abscessus complex, 68 (54.4 %) were sensitive to macrolides, 57 (45.6 %) were resistant to aminoglycosides, and just one (0.8 %) showed resistance to aminoglycosides. The 52 cultures (15.5 %) identified as M. chelonae were sensitive to macrolides and aminoglycosides.
Conclusions. The three studied species of mycobacteria have the least resistance to Amikacin. Subspecies identification and their susceptibility profiles allow the establishment of appropriate treatment schemes, especially against M. abscessus.

Downloads

Download data is not yet available.

References

Falkinham J. Ecology of nontuberculous mycobacteria. Microorganisms. 2021;9:2262. https://doi.org/10.3390/microorganismos9112262

To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020;9:2541. https://doi.org/10.3390/jcm9082541

Akram SM, Rathish B, Saleh D. Mycobacterium chelonae infection. StatPearls (Internet). Treasure Island, FL: StatPearls Publishing; 2024.

Cobos-Trigueros N, Ateka O, Pitart C, Vila J. Macrólidos y cetólidos. Enferm Infecc Microbiol Clin. 2009;27:412-8. https://doi.org/10.1016/j.eimc.2009.06.002

Carreto L, González Y, Beltrán S. Enfermedad pulmonar causada por micobacterias no tuberculosas: diagnóstico, tratamiento y mecanismos de resistencia a los antimicrobianos. Neumol Cir Torax. 2021;80:141-53. https://doi.org/10.35366/100997

Da Mata O, Fernández S, Rodríguez M, Dewaard J. Mecanismos de resistencia en micobacterias de crecimiento rápido. Revista del Instituto Nacional de Higiene Rafael Rangel. 2016;47:95-124.

Esteban J, Navas E. Tratamiento de las infecciones producidas por micobacterias no tuberculosas. Enfermedades Infecciosas y Microbiología Clínica. 2018;36:586-92. https://doi.org/10.1016/j.eimc.2017.10.008

Jones R, Shier K, Master R, Bao J, Clark R. Current significance of the Mycobacterium chelonae-abscessus group. Diagn Microbiol Infect Dis. 2019;94:248-254. https://doi.org/10.1016/j.diagmicrobio.2019.01.021

Diel R, Lipman M, Hoefsloot W. High mortality in patients with Mycobacterium avium complex lung disease: A systematic review. BMC Infect Dis. 2018;18:206. https://doi.org/10.1186/s12879-018-3113-x

Johansen M, Herrmann J, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol. 2020;18:392-407. https://doi.org/10.1038/s41579-020-0331-1

Hain Lifescience. GenoType NTM-DR™. Versión 1.0. Hardwiesenstraße, Nehren: Hain Lifescience; 2019.

Illouz M, Alcaraz M, Roquet-Banères F, Kremer L. Mycobacterium abscessus, un modèle de résistance aux différentes classes d’antibiotiques. Med Sci (Paris). 2021;37:993-1001. https://doi.org/10.1051/medsci/2021164

Máiz-Carro L, Barbero-Herranz E, Nieto-Royo R. Infecciones respiratorias por micobacterias no tuberculosas. Medicina Clínica. 2018;150:191-7. https://doi.org/10.1016/j.medcli.2017.07.010

Wang W, Yang J, Wu X, Wan B, Wang H, Yu F, et al. Difference in drug susceptibility distribution and clinical characteristics between Mycobacterium avium and Mycobacterium intracellulare lung diseases in Shangai, China. J. Med Microbiol. 2021;70. https://doi.org/10.1099/jmm.0.001358

Mora A, Giraldo S, Castillo A, Ferro B. Comportamiento clínico de la infección y enfermedad causada por micobacterias no tuberculosas en Latinoamérica: Revisión de alcance. Rev Peru Med Exp Salud Pública. 2021;38:318-25. https://doi.org/10.17843/rpmesp.2021.382.6108

Maurer F, Pohle P, Kernbach M, Sievert D, Hillemann D, Rupp J, et al. Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clin Microbiol Infect. 2019;25:379 e1-7. https://doi.org/10.1016/j.cmi.2018.06.010

Hajikhani B, Nasiri M, Hosseini S, Khalili F, Karimi-Yazdi M, Hematian A, et al. Clofazimine susceptibility testing of Mycobacterium avium complex and Mycobacterium abscessus: A meta-analysis study. J Glob Antimicrob Resist. 2021;26:188-93. https://doi.org/10.1016/j.jgar.2021.06.002

Wetzstein N, Kohl T, Andres S, Schultze T, Geil A, Kim E, et al. Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex. Int J Infect Dis. 2020;93:320-8. https://doi.org/10.1016/j.ijid.2020.02.059

Litvinov V, Makarova M, Galkina K, Khachaturiants E, Krasnova M, Guntupova L, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco testsystem. PLoS ONE. 2018:13:e0203108. https://doi.org/10.1371/journal.pone.0203108

Wassilew N, Hillemann D, Maurer F, Kohl T, Merker M, Brinkman F, et al. Evaluation of the GenoType® NTM DR for subspecies identification and determination of drug resistance in clinical M. abscessus isolates. Clin Microbiol. 2017;6:751-7. http://doi.org/10.4172/2327-5073.1000286

Ramírez A, Araque M. Patógenos emergentes multirresistentes: complejo Mycobacterium abscessus. Avan Biomed. 2017;6:203-15.

Bryant JM, Grogono DM, Rodriguez D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant non-tuberculous mycobacterium. Science. 2016;354:751-7. https://doi.org/10.1126/science.aaf8156

Weng Y, Huang C, Sy C, Wu K, Tsai H, Shin-Jung S, et al. Treatment for Mycobacterium abscessus complex-lung disease. J Formos Med Assoc. 2020;119:S58eS66. https://doi.org/10.1016/j.jfma.2020.05.028

Guo Q, Wei J, Zou W, Li Q, Qian X, Zhu Z. Antimicrobial susceptibility profiles of Mycobacterium abscessus complex isolates from respiratory specimens in Shanghai, China. J Glob Antimicrob Resist.. 2021;25:72-6. https://doi.org/10.1016/j.jgar.2021.02.024

Liu C, Song Y, He W, Liu D, He P, Bao J, et al. Non-tuberculous mycobacteria in China: Incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty. 2021;10:59. https://doi.org/10.1186/s40249-021-00844-1

Ramírez A, Morcillo N, Imperiale B, Araque M, Waard J. Comparación y evaluación de métodos cuantitativos para determinar la susceptibilidad antimicrobiana de cepas del complejo Mycobacterium abscessus. Rev Cienc Salud. 2018;16:69-81. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.6491

Gu C, Zhao C, Hofstaedter C, Tebas P, Glaser L, Baldassano R, et al. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. PLoS ONE. 2020;15:e0236533. https://doi.org/10.1371/journal.pone.0236533

Özdemir H, Şimşek H, Çöplü N, Çağatay M. Percentages of drug resistance detected in non-tuberculous mycobacteria isolated from pulmonary samples. FLORA. 2020;25:372-82. https://doi.org/10.5578/flora.69616

Karami-Zarandi M, Bahador A, Gizaw-Feysia S, Kardan-Yamchi J, Hasan-Nejad M, Mosavari N, et al. Identification of non-tuberculosis mycobacteria by line probe assay and determination of drug resistance patterns of isolate in Iranian patients. Archives of Razi Institute. 2019;74:375-84. https://doi.org/10.22092/ari.2019.127144.1372

How to Cite
1.
Llerena C, Valbuena YA, Zabaleta AP, García AN. Prevalence of resistance to macrolides and aminoglycosides in Mycobacterium avium, M. abscessus, and M. chelonae identified in the Laboratorio Nacional de Referencia of Colombia from 2018 to 2022. biomedica [Internet]. 2024 May 30 [cited 2024 Jun. 29];44(2):182-90. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/7197
Published
2024-05-30
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code