Influence of CYP3A4/5 polymorphisms in the pharmacokinetics of levonorgestrel: a pilot study

Iván Moreno, Luis Quiñones, Johanna Catalán, Carla Miranda, Angela Roco, Jaime Sasso, Evelyn Tamayo, Dante Cáceres, Andrei N. Tchernitchin, Leonardo Gaete, Iván Saavedra, .

Keywords: Levonorgestrel, hormones, pharmacogenetics

Abstract

Introduction. Levonorgestrel a synthetic progestagen used for endometriosis, dysmenorrhea and emergency contraception, is quickly and completely absorbed in the digestive tract. levonorgestrelis predominantly metabolised through hepatic routes that utilise the CYP3A system (CYP3A4 andCYP3A5).

Objective. This study aimed to evaluate the association between variant alleles of CYP3A4*1B andCYP3A5*3 polymorphisms and the pharmacokinetics of levonorgestrel.

Materials and methods. A group of 17 adult female healthy volunteers who signed an informed consent were genotyped for CYP3A4 and CYP3A5 through PCR-RFLP. Volunteers were submitted to pharmacokinetic analysis where, after a 12-hour overnight fast, they received a single oral dose of 0.75 mg of levonorgestrel. Serial blood samples were obtained (0 to 24 hours), and levonorgestrel concentrations were determined by UPLC-MS/MS to determine pharmacokinetic parameters. The procedures employed herein were performed according to the Declaration of Helsinki and Good Clinical Practices standards.

Results. Observed genotype frequencies in the studied group for CYP3A4*1B were 11.8% for *1B/*1B,5.8% for *1/*1B and 82.4% for *1/*1. CYP3A5*3 frequencies were 70.5% for *3/*3, 23.5% for *1/*3 and 6.5% for *1/*1. A high pharmacokinetic variability between volunteers was observed, but no statistical association of pharmacokinetic parameters was found within the studied CYP3A4/5 polymorphisms.


Conclusions. Genetic polymorphisms could be important factors in determining inter-patient variabilityin plasma levonorgestrel concentrations, which in this study were not significantly associated with the presence of CYP3A4*1B and CYP3A5*3 polymorphisms. Therefore, due to the significant inter-patientvariability that we observed during the course of this study, it is necessary to carry out studies with larger number of volunteers.

 

doi: http://dx.doi.org/10.7705/biomedica.v32i4.789

Downloads

Download data is not yet available.
  • Iván Moreno Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Luis Quiñones Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Johanna Catalán Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Carla Miranda Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Angela Roco Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile Hospital San Juan de Dios, Santiago de Chile, Chile
  • Jaime Sasso Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Evelyn Tamayo Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Dante Cáceres Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Andrei N. Tchernitchin Laboratorio de Endocrinología Experimental y Patología Ambiental, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Leonardo Gaete Laboratorio de Endocrinología Experimental y Patología Ambiental, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
  • Iván Saavedra Centro de Investigaciones Farmacológicas y Toxicológicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile

References

Guengerich FP. CYTOCHROME P450: Structure, Mechanism, and Biochemistry. Chapter 10: Human Cytochrome P450 enzymes. Third Edition. (Edited by Ortíz de Montellano PR). New York:. Kluwer Academic/Plenum Publishers; 2005.p. 377-530.

Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414-23.

Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol. 1998;38:389-430.

Guengerich FP. Cytochrome P450 3A4: Regulation and Role in drug metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1-17.

Frye R, Fitzgerald S, Lagattuta T, Hruska M y Egorin M. Effect of St John’s work on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther. 2004;76:323-9.

Brunton LL, Lazo JS, Parker KL. Estrogens and progestins. En: Loose DS, Stancel GM, editors. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed New York: McGraw-Hill; 2006.p. 1541-71.

Langston A. Emergency contraception: update and review. Semin Reprod Med. 2010;28:95-102.

Wagstaff AJ. Continuous-use ethinylestradiol/levonorgestrel 20microg/90microg: as an oral contraceptive. Drugs. 2007;67:2473-7.

Paine MJ, Scrutton NS, Munro AW, Gutiérrez A, Roberts GC, Wolf CR. Chapter 4: Electron transfer partners of cytochrome P450. En: Ortiz de Montellano PR, editor. CYTOCHROME P450: structure, mechanism, and biochemistry. Third Edition. New York: Kluwer Academic/Plenum Publishers; 2005. p. 115-48.

Yamazaki H, Tsutomu S. Progesterone and testosterone hydroxilation by cytochromes P450 2C19, 2C9 and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997;346:161-9.

Stanczyk FZ, Roy C. Metabolism of levonorgestrel, norethindrone and structurally related contraceptive steroids. Contraception. 1990;42:67-96.

Suk Wai N, Fan S, Li S, Linan Ch, Ding J, Xiaoping J, et al. A randomized trial to compare 24 h versus 12 h double dose regimen of levonorgestrel for emergency contraception. Hum Reprod. 2005;20:307-11.

Zhao LZ, Zhong GP, Bi H, Ding L, Deng Y, Guan S, et al. Determination of levonorgestrel in human plasma by liquid chromatography-tandem mass spectrometry method: application to a bioequivalence study of two formulations in healthy volunteers. Biomed Chromatogr. 2008;22:519-26.

Cavalli SA, Hirata MH, Hirata RD. Detection of MboII polymorphism at the 5' promoter region of CYP3A4. Clin Chem. 2001;47:348-51.

Lee SJ, Goldstein JA. Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics. 2005;6:357-71.

Theron HB, Coetzee C, Sutherland F, Wiesner J, Swart K. Selective and sensitive liquid chromatography-tandem mass spectrometry method for the determination of levonorgestrel in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;813:331-6.

Sambola NC, Harper C, Kim L, Liua Ch, Darney P, Raine T. Pharmacokinetics of single-dose levonorgestrel in adolescents. Contraception. 2006;74:104-9.

Nuremberg Doctors' Trial. Declaration of Helsinki (1964). BMJ. 1996;313:1448-9.

Food and Drug Administration. Guidance for Industry: E6 Good Clinical Practice: consolidate guidance. Rockville, MD : U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Control, Center for Biologics Evaluation and Research; 1996.

Acuña M, Llop E, Rothhmmer F. Composición genética de la población chilena: las comunidades rurales de los valles del Elqui, Limarí y Choapa. Rev Med Chile. 2000;128:593-600. doi: 10.4067/S0034-98872000000600004

Amiramini B, Weber B, Rebbeck T. Regulation of reporter gene expression by a CYP3A4 promoter variant in primary human hepatocytes. Proc Am Assoc Cancer Res. 2000;60:114.

Wandel C, Witte J, Hall J, Stein C, Wood A, Wilkinson G. CYP3A4 activity in African American and European American men: population differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5’-upstream regulatory region. Clin Pharmacol Ther. 2000;68:82-91.

Schirmer M, Rosenberger A, Klein K, Kulle B, Toliat M, Nürnberg P, et al. Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes. Pharmacogenomics. 2007;8:443-53.

Kuehl P, Zhang J, Lin Y, Brockmoller J, Hustert E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383-91.

Huang W, Lin Y, McConn II D, Calamia J, Totah R, Isoherranen N, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004;32:1434-45.

Roco A, Quiñones L, Agúndez J, García-Martín E, Squicciarini V, Miranda C, et al. Allele frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: comparison with Caucasian and Asian populations. Frontiers in Pharmacogenetics and Pharmacogenomics. 2012.

How to Cite
1.
Moreno I, Quiñones L, Catalán J, Miranda C, Roco A, Sasso J, et al. Influence of CYP3A4/5 polymorphisms in the pharmacokinetics of levonorgestrel: a pilot study. biomedica [Internet]. 2012 Dec. 1 [cited 2024 May 19];32(4):570-7. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/789
Published
2012-12-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code