Nuevos esquemas de inmunoterapia específicas con alérgenos

José Fernando Cantillo, Leonardo Puerta, .

Palabras clave: alergia e inmunología, inmunoterapia, alérgenos, desensibilización, inmunoglobulina E, factores inmunológicos

Resumen

Las enfermedades alérgicas, como el asma y la rinitis, son un problema de salud de importancia en todos los países y con una tendencia global al aumento en su prevalencia.
La inmunoterapia específica con extractos alergénicos naturales es el único tratamiento con antígenos dirigido a brindar una protección duradera y que beneficia a la mayoría de la población tratada. Sin embargo, este tratamiento presenta inconvenientes porque los extractos son preparaciones de difícil estandarización y gran complejidad en sus componentes, lo que aumenta los riesgos de que se presenten reacciones adversas y nuevas sensibilizaciones a otros antígenos presentes en el extracto. Por lo tanto, se ha planteado la necesidad de desarrollar nuevos esquemas de inmunoterapia específica con el alérgeno en los que se utilicen moléculas bien caracterizadas de fácil estandarización y manejo, con las que se puedan brindar tratamientos más seguros y eficaces.
Con estos nuevos esquemas se han diseñado vacunas basadas en alérgenos recombinantes y variantes o péptidos derivados de éstos, para ser administrados solos o con adyuvantes en preparaciones que favorecen la captación y presentación antigénica por las células dendríticas o tienen como blanco las células efectoras, como mastocitos y basófilos. Los estudios in vitro, en modelos animales y algunos en fase clínica en humanos, indican que estas preparaciones pueden brindar protección frente a la exposición alergénica o mejorar la sintomatología, al inducir la producción de anticuerpos bloqueadores de la actividad de la IgE, de células T reguladoras y de citocinas del perfil Th1.

Descargas

La descarga de datos todavía no está disponible.
  • José Fernando Cantillo Instituto de Investigaciones Inmunológicas, Universidad de Cartagena, Cartagena de Indias, Colombia
  • Leonardo Puerta Instituto de Investigaciones Inmunológicas, Universidad de Cartagena, Cartagena de Indias, Colombia

Referencias

1. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature. 2008;453: 1051-7.
2. Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, Crameri R, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199:1567-75.
3. Bousquet J, Lockey R, Malling HJ, Álvarez-Cuesta E, Canonica GW, Chapman MD, et al. Allergen immunotherapy: Therapeutic vaccines for allergic diseases. World Health Organization. American Academy of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol. 1998;81:401-5.
4. Noon L. Prophylactic inoculation against hay fever. Lancet. 1911;1:1572-3.
5. Freeman J. Vaccination against hay fever, report of results during the last years. Lancet. 1914;1:1178-80.
6. Compalati E, Penagos M, Tarantini F, Passalacqua G, Canonica GW. Specific immunotherapy for respiratory allergy: state of the art according to current meta-analyses. Ann Allergy Asthma Immunol. 2009;102:22-8.
7. Francis JN, Till SJ, Durham SR. Induction of IL-10+CD4+CD25+T cells by grass pollen immunotherapy. J Allergy Clin Immunol. 2003;111:1255-61.
8. Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O. Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol. 2005;116:608-13.
9. Strait RT, Morris SC, Finkelman FD. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and Fc gamma RIIb cross-linking. J Clin Invest. 2006;116:833-41.
10. Shim JY, Kim BS, Cho SH, Min KU, Hong SJ. Allergen-specific conventional immunotherapy decreases immunoglobulin e-mediated basophil histamine releasability. Clin Exp Allergy. 2003;33:52-7.
11. Scranton SE, González EG, Waibel KH. Incidence and characteristics of biphasic reactions after allergen immunotherapy. J Allergy Clin Immunol. 2009;123:493-8.
12. Bernstein DI, Wanner M, Borish L, Liss GM. Twelve-year survey of fatal reactions to allergen injections and skin testing: 1990-2001. J Allergy Clin Immunol. 2004;113:1129-36.
13. Akdis M, Akdis CA. Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov. 2009;8:645-60.
14. Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Gronlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy. 1999;29:896-904.
15. Ballmer-Weber BK, Wangorsch A, Bohle B, Kaul S, Kundig T, Fotisch K, et al. Component-resolved in vitro diagnosis in carrot allergy: Does the use of recombinant carrot allergens improve the reliability of the diagnostic procedure? Clin Exp Allergy. 2005;35:970-8.
16. Caraballo L, Mercado D, Jiménez S, Moreno L, Puerta L, Chua KY. Analysis of the cross-reactivity between BtM and Der p 5, two group 5 recombinant allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. Int Arch Allergy Immunol. 1998;117:38-45.
17. Caraballo L, Puerta L, Jiménez S, Martínez B, Mercado D, Avjiouglu A, et al. Cloning and IgE binding of a recombinant allergen from the mite Blomia tropicalis, homologous with fatty acid-binding proteins. Int Arch Allergy Immunol. 1997;112:341-7.
18. Jiménez S, Puerta L, Mendoza D, Chua KW, Mercado D, Caraballo L. IgE antibody responses to recombinant allergens of Blomia tropicalis and Dermatophagoides pteronyssinus in a tropical environment. Allergy Clin Immunol Int: J World Allergy Org. 2007;19:233-8.
19. Puerta L, Labrada M, Uyema K, Jiménez S, Caraballo L. Blo t 13 allergen from Blomia tropicalis shows high frequency of IgE binding in allergic Cuban patients and cross-reactivity with Dermatophagoides siboney extract. J Allergy Clin Immunol. 2003;111:S325.
20. Puerta L, Lagares A, Mercado D, Fernández-Caldas E, Caraballo L. Allergenic composition of the mite Suidasia medanensis and cross-reactivity with Blomia tropicalis. Allergy. 2005;60:41-7.
21. Caraballo L, Puerta L, Martínez B, Moreno L. Identification of allergens from the mite Blomia tropicalis. Clin Exp Allergy. 1994;24:1056-60.
22. Pauli G, Larsen TH, Rak S, Horak F, Pastorello E, Valenta R, et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2008;122:951-60.
23. Lagares A, Puerta L, Caraballo L. El polimorfismo en los alergenos. Biomédica. 2002;22:51-62.
24. Zakzuk J, Jiménez S, Cheong N, Puerta L, Lee BW, Chua KY, et al. Immunological characterization of a Blo t 12 isoallergen: identification of immunoglobulin E epitopes. Clin Exp Allergy. 2009;39:608-16.
25. Wagner S, Radauer C, Bublin M, Hoffmann-Sommergruber K, Kopp T, Greisenegger EK, et al. Naturally occurring hypoallergenic Bet v 1 isoforms fail to induce IgE responses in individuals with birch pollen allergy. J Allergy Clin Immunol. 2008;121:246-52.
26. King TP, Jim SY, Monsalve RI, Kagey-Sobotka A, Lichtenstein LM, Spangfort MD. Recombinant allergens with reduced allergenicity but retaining immunogenicity of the natural allergens: Hybrids of yellow jacket and paper wasp venom allergen antigen 5s. J Immunol. 2001;166:6057-65.
27. González-Rioja R, Ibarrola I, Arilla MC, Ferrer A, Mir A, Andreu C, et al. Genetically engineered hybrid proteins from Parietaria judaica pollen for allergen-specific immunotherapy. J Allergy Clin Immunol. 2007;120:602-9.
28. Linhart B, Hartl A, Jahn-Schmid B, Verdino P, Keller W, Krauth MT, et al. A hybrid molecule resembling the epitope spectrum of grass pollen for allergy vaccination. J Allergy Clin Immunol. 2005;115:1010-6.
29. Kussebi F, Karamloo F, Rhyner C, Schmid-Grendelmeier P, Salagianni M, Mannhart C, et al. A major allergen gene-fusion protein for potential usage in allergen-specific immunotherapy. J Allergy Clin Immunol. 2005;115:323-9.
30. Ball T, Linhart B, Sonneck K, Blatt K, Herrmann H, Valent P, et al. Reducing allergenicity by altering allergen fold: a mosaic protein of Phl p 1 for allergy vaccination. Allergy. 2009;64:569-80.
31. Chen KW, Fuchs G, Sonneck K, Gieras A, Swoboda I, Douladiris N, et al. Reduction of the in vivo allergenicity of Der p 2, the major house-dust mite allergen, by genetic engineering. Mol Immunol. 2008;45:2486-98.
32. Westritschnig K, Focke M, Verdino P, Goessler W, Keller W, Twardosz A, et al. Generation of an allergy vaccine by disruption of the three-dimensional structure of the cross-reactive calcium-binding allergen, Phl p 7. J Immunol. 2004;172:5684-92.
33. Karisola P, Mikkola J, Kalkkinen N, Airenne KJ, Laitinen OH, Repo S, et al. Construction of hevein (Hev b 6.02) with reduced allergenicity for immunotherapy of latex allergy by comutation of six amino acid residues on the conformational IgE epitopes. J Immunol. 2004;172:2621-8.
34. Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, et al. Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J Immunol. 2000;165:331-8.
35. Holm J, Gajhede M, Ferreras M, Henriksen A, Ipsen H, Larsen JN, et al. Allergy vaccine engineering: epitope modulation of recombinant Bet v 1 reduces IgE binding but retains protein folding pattern for induction of protective blocking-antibody responses. J Immunol. 2004;173:5258-67.
36. Chan SL, Ong ST, Ong SY, Chew FT, Mok YK. Nuclear magnetic resonance structure-based epitope mapping and modulation of dust mite group 13 allergen as a hypoallergen. J Immunol. 2006;176:4852-60.
37. Ma Y, Gadermaier G, Bohle B, Bolhaar S, Knulst A, Markovic-Housley Z, et al. Mutational analysis of amino acid positions crucial for IgE-binding epitopes of the major apple (Malus domestica) allergen, Mal d 1. Int Arch Allergy Immunol. 2006;139:53-62.
38. Oldfield WL, Kay AB, Larche M. Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J Immunol. 2001;167:1734-9.
39. Oldfield WL, Larche M, Kay AB. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomized controlled trial. Lancet. 2002;360:47-53.
40. Liu YH, Kao MC, Lai YL, Tsai JJ. Efficacy of local nasal immunotherapy for Dp2-induced airway inflammation in mice: using Dp2 peptide and fungal immunomodulatory peptide. J Allergy Clin Immunol. 2003;112:301-10.
41. Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods. 2006;40:60-5.
42. Kundig TM, Senti G, Schnetzler G, Wolf C, Prinz BM, Fulurija A, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol. 2006;117:1470-6.
43. Leb VM, Jahn-Schmid B, Kueng HJ, Schmetterer KG, Haiderer D, Neunkirchner A, et al. Modulation of allergen-specific T-lymphocyte function by virus-like particles decorated with HLA class II molecules. J Allergy Clin Immunol. 2009;124:121-8.
44. Schmitz N, Dietmeier K, Bauer M, Maudrich M, Utzinger S, Muntwiler S, et al. Displaying Fel d1 on virus-like particles prevents reactogenicity despite greatly enhanced immunogenicity: a novel therapy for cat allergy. J Exp Med. 2009;206:1941-55.
45. Fellrath JM, Kettner A, Dufour N, Frigerio C, Schneeberger D, Leimgruber A, et al. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J Allergy Clin Immunol. 2003;111:854-61.
46. Alexander C, Tarzi M, Larche M, Kay AB. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy. 2005;60:1269-74.
47. Norman PS, Ohman JL Jr, Long AA, Creticos PS, Gefter MA, Shaked Z, et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med. 1996;154:1623-8.
48. Alexander C, Ying S, Kay AB, Larché M. Fel d 1-derived t cell peptide therapy induces recruitment of CD4+ CD25+; CD4+ interferon-gamma+ T helper type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin Exp Allergy. 2005;35:52-8.
49. Smith TR, Alexander C, Kay AB, Larche M, Robinson DS. Cat allergen peptide immunotherapy reduces CD4(+) T cell responses to cat allergen but does not alter suppression by CD4(+) CD25(+) T cells: a double-blind placebo-controlled study. Allergy. 2004;59:1097-101.
50. Verhoef A, Alexander C, Kay AB, Larche M. T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med. 2005;2:e78.
51. Tarzi M, Klunker S, Texier C, Verhoef A, Stapel SO, Akdis CA, et al. Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin Exp Allergy. 2006;36:465-74.
52. Campbell JD, Buckland KF, McMillan SJ, Kearley J, Oldfield WL, Stern LJ, et al. Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression. J Exp Med. 2009;206:1535-47.
53. Wallmann J, Proell M, Stepanoska T, Hantusch B, Pali-Scholl I, Thalhamer T, et al. A mimotope gene encoding the major IgE epitope of allergen Phl p 5 for epitope-specific immunization. Immunol Lett. 2009;122:68-75.
54. Blaser K. Allergen dose dependent cytokine production regulates specific IgE and IgG antibody production. Adv Exp Med Biol. 1996;409:295-303.
55. Crameri R, Fluckiger S, Daigle I, Kundig T, Rhyner C. Design, engineering and in vitro evaluation of MHC class-II targeting allergy vaccines. Allergy. 2007;62:197-206.
56. Martínez-Gómez JM, Johansen P, Rose H, Steiner M, Senti G, Rhyner C, et al. Targeting the MHC class II pathway of antigen presentation enhances immunogenicity and safety of allergen immunotherapy. Allergy. 2009;64:172-8.
57. Vailes LD, Sun AW, Ichikawa K, Wu Z, Sulahian TH, Chapman MD, et al. High-level expression of immunoreactive recombinant cat allergen (Fel d 1): Targeting to antigen-presenting cells. J Allergy Clin Immunol. 2002;110:757-62.
58. Hulse KE, Reefer AJ, Engelhard VH, Satinover SM, Patrie JT, Chapman MD, et al. Targeting Fel d 1 to FcgammaRi induces a novel variation of the T(H)2 response in subjects with cat allergy. J Allergy Clin Immunol. 2008;121:756-62.
59. Behnecke A, Li W, Chen L, Saxon A, Zhang K. IgE-mediated allergen gene vaccine platform targeting human antigen-presenting cells through the high-affinity IgE receptor. J Allergy Clin Immunol. 2009;124:108-13.
60. Bros M, Ross XL, Pautz A, Reske-Kunz AB, Ross R. The human fascin gene promoter is highly active in mature dendritic cells due to a stage-specific enhancer. J Immunol. 2003;171:1825-34.
61. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14:201-7.
62. Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40:175-81.
63. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5:387-91.
64. Li J, Liu Z, Wu Y, Wu H, Ran P. Chitosan microparticles loaded with mite group 2 allergen Der f 2 alleviate asthma in mice. J Investig Allergol Clin Immunol. 2008;18:454-60.
65. Saint-Lu N, Tourdot S, Razafindratsita A, Mascarell L, Berjont N, Chabre H, et al. Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction. Allergy. 2009;64:1003-13.
66. Gronlund H, Vrtala S, Wiedermann U, Dekan G, Kraft D, Valenta R, et al. Carbohydrate-based particles: a new adjuvant for allergen-specific immunotherapy. Immunology. 2002;107:523-9.
67. Andersson TN, Ekman GJ, Gronlund H, Buentke E, Eriksson TL, Scheynius A, et al. A novel adjuvant-allergen complex, CBP-rFel d 1, induces up-regulation of CD86 expression and enhances cytokine release by human dendritic cells in vitro. Immunology. 2004;113:253-9.
68. Neimert-Andersson T, Thunberg S, Swedin L, Wiedermann U, Jacobsson-Ekman G, Dahlen SE, et al. Carbohydrate-based particles reduce allergic inflammation in a mouse model for cat allergy. Allergy. 2008;63:518-26.
69. Ujike A, Ishikawa Y, Ono M, Yuasa T, Yoshino T, Fukumoto M, et al. Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. J Exp Med. 1999;189:1573-9.
70. Zhu D, Kepley CL, Zhang K, Terada T, Yamada T, Saxon A. A chimeric human-cat fusion protein blocks cat-induced allergy. Nat Med. 2005;11:446-9.
71. Terada T, Zhang K, Belperio J, Londhe V, Saxon A. A chimeric human-cat Fcgamma-Fel d1 fusion protein inhibits systemic, pulmonary, and cutaneous allergic reactivity to intratracheal challenge in mice sensitized to Fel d1, the major cat allergen. Clin Immunol. 2006;120:45-56.
72. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA. 1996;93:2879-83.
73. Kohama Y, Akizuki O, Hagihara K, Yamada E, Yamamoto H. Immunostimulatory oligodeoxynucleotide induces TH1 immune response and inhibition of IgE antibody production to cedar pollen allergens in mice. J Allergy Clin Immunol. 1999;104:1231-8.
74. Jahn-Schmid B, Wiedermann U, Bohle B, Repa A, Kraft D, Ebner C. Oligodeoxynucleotides containing CpG motifs modulate the allergic TH2 response of BALB/c mice to Bet v 1, the major birch pollen allergen. J Allergy Clin Immunol. 1999;104:1015-23.
75. Tighe H, Takabayashi K, Schwartz D, van Nest G, Tuck S, Eiden JJ, et al. Conjugation of immunostimulatory DNA to the short ragweed allergen Amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol. 2000;106:124-34.
76. Marshall JD, Abtahi S, Eiden JJ, Tuck S, Milley R, Haycock F, et al. Immunostimulatory sequence DNA linked to the Amb a 1 allergen promotes T(H)1 cytokine expression while downregulating T(H)2 cytokine expression in PBMCs from human patients with ragweed allergy. J Allergy Clin Immunol. 2001;108:191-7.
77. Higgins D, Rodríguez R, Milley R, Marshall J, Abbate C, de La Cruz T, et al. Modulation of immunogenicity and allergenicity by controlling the number of immunostimulatory oligonucleotides linked to Amb a 1. J Allergy Clin Immunol. 2006;118:504-10.
78. Zhu FG, Kandimalla ER, Yu D, Agrawal S. Oral administration of a synthetic agonist of toll-like receptor 9 potently modulates peanut-induced allergy in mice. J Allergy Clin Immunol. 2007;120:631-7.
79. Iliev ID, Tohno M, Kurosaki D, Shimosato T, He F, Hosoda M, et al. Immunostimulatory oligodeoxynucleotide containing TTTCGTTT motif from lactobacillus rhamnosus GG DNA potentially suppresses ova-specific IgE production in mice. Scand J Immunol. 2008;67:370-6.
80. Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol. 2001;31:2154-63.
81. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J, et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol. 2003;73:781-92.
82. Hartmann G, Battiany J, Poeck H, Wagner M, Kerkmann M, Lubenow N, et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN -alpha induction in plasmacytoid dendritic cells. Eur J Immunol. 2003;33:1633-41.
83. Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA. 1999;96:9305-10.
84. Senti G, Johansen P, Haug S, Bull C, Gottschaller C, Muller P, et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy. 2009;39:562-70.
85. Simons FE, Shikishima Y, van Nest G, Eiden JJ, HayGlass KT. Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J Allergy Clin Immunol. 2004;113:1144-51.
86. Creticos PS, Schroeder JT, Hamilton RG, Balcer-Whaley SL, Khattignavong AP, Lindblad R, et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med. 2006;355:1445-55.
87. Tulic MK, Fiset PO, Christodoulopoulos P, Vaillancourt P, Desrosiers M, Lavigne F, et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J Allergy Clin Immunol. 2004;113:235-41.
88. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404-13.
89. Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol. 2004;172:1777-85.
90. Shirota H, Sano K, Kikuchi T, Tamura G, Shirato K. Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligodeoxynucleotides as a novel antigen-specific immunomodulator. J Immunol. 2000;164:5575-82.
Cómo citar
Cantillo, J. F., & Puerta, L. (2010). Nuevos esquemas de inmunoterapia específicas con alérgenos. Biomédica, 30(3), 440-53. https://doi.org/10.7705/biomedica.v30i3.278

Más sobre este tema

Publicado
2010-09-30
Sección
Revisión de tema