Evaluación in vitro y QSAR (Quantitative and Structure-Activity Relationship) de la actividad antifúngica de terpenoides obtenidos de aceites esenciales frente a Alternaria alternata y Fusarium oxysporum

Sergio Andrade-Ochoa, Daniela Sánchez-Aldana, Luz María Rodríguez-Valdez, Guadalupe Virginia Nevárez-Moorillón, .

Palabras clave: Fusarium, Alternaria, aceites volátiles, relación estructura-actividad cuantitativa


Introduction. Fungal genera Alternaria and Fusarium include human and plant pathogenic species. Several antifungals have been used for their control, but excessive use has contributed to resistance development in pathogens. An alternative to searching for and developing new antifungal agents is using essential oils and their main components, which have biological activities of interest in medicine and food production.
Objective. To evaluate in vitro and in silico the antifungal activities of terpenoids against Alternaria alternata and Fusarium oxysporum.
Materials and methods. The minimum inhibitory concentration and minimum fungicidal concentration values of 27 constituents of essential oils used against Alternaria alternata and Fusarium oxysporum were evaluated in vitro. In addition, using genetic algorithms, quantitative models of the structure-activity relationship were used to identify the structural and physicochemical properties related to antifungal activity.
Results. The evaluated compounds proved to be effective antifungals. Thymol was the most active with a minimum inhibitory concentration of 91.6 ± 28.8 μg/ml for A. alternata and F. oxysporum. Quantitative structure-activity relationship models revealed the octanolwater cleavage ratio as the molecular property, and the phenols as the main functional group contributing to antifungal activity.
Conclusion. Terpenoids exhibit relevant antifungal activities that should be incorporated into the study of medicinal chemistry. Inclusion of in silico assays in the in vitro evaluation is a valuable tool in the search for and rational design of terpene derivatives as new potential antifungal agents.


Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Wolters PJ, Faino L, van Den Bosch TB, Evenhuis B, Visser RG, Seidl MF, et al. Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani. Mol Plant Microbe Interact. 2018;31:692-4. https://doi.org/10.1094/MPMI-12-17-0309-A

Edel-Hermann V, Lecomte C. Current status of Fusarium oxysporum Formae Speciales and races. Phytopathology. 2019;109:512-30. https://doi.org/10.1094/PHYTO-08-18-0320-RVW

Didehdar M, Khoshbayan A, Vesal S, Darban-Sarokhalil D, Razavi S, Chegini Z, et al. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microb Pathog. 2021;155:104905. https://doi.org/10.1016/j.micpath.2021.104905

Velázquez-Contreras F, Acevedo-Parra H, Nuño-Donlucas SM, Núñez -Delicado E, Gabaldón JA. Development and characterization of a biodegradable PLA food packaging hold monoterpene–cyclodextrin complexes against Alternaria alternata. Polymers. 2019;11:1720. https://doi.org/10.3390/polym11101720

Dallé da Rosa P, Aquino V, Fuentefría AM, Goldani LZ. Diversity of Fusarium species causing invasive and disseminated infections. J Mycol Med. 2021;31:101137. https://doi.org/10.1016/j.mycmed.2021.101137

Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The status of Fusarium mycotoxins in sub-Saharan Africa: A review of emerging trends and postharvest mitigation strategies towards food control. Toxins. 2017;9:19. https://doi.org/10.3390/toxins9010019

Tewoldemedhin YT, Mazzola M, Botha WJ, Spies CF, McLeod A. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol. 2011;130:215-29. https://doi.org/10.1007/s10658-011-9747-9

Oli N, Singh UK, Jha SK. Antifungal activity of plant’s essential oils against post-harvest fungal disease of apple fruit. Forestry. Int J For Res Nepal. 2019;16:86-100. https://doi.org/10.3126/forestry.v16i0.28361

Ouda SM. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol. 2014;9:3442.

Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology. 2011;39:194-9. https://doi.org/10.5941/MYCO.2011.39.3.194

Miles TD, Miles LA, Fairchild KL, Wharton PS. Screening and characterization of resistance to succinate dehydrogenase inhibitors in Alternaria solani. Plant Pathology. 2014;63:155-64. https://doi.org/10.1111/ppa.12077

Lucas JA, Hawkins NJ, Fraaije BA. The evolution of fungicide resistance. Adv Appl Microbiol. 2015;90:29-92. https://doi.org/10.1016/bs.aambs.2014.09.001

Neoh CF, Leung L, Vajpayee RB, Stewart K, Kong DC. Treatment of Alternaria keratitis with intrastromal and topical caspofungin in combination with intrastromal, topical, and oral voriconazole. Ann Pharmacother. 2011;45:e24. https://doi.org/10.1345/aph.1P586

Al-Hatmi AM, van Diepeningen AD, Curfs-Breuker I, de Hoog GS, Meis JF. Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. J Antimicrob Chemother. 2014;70:1068-71. https://doi.org/10.1093/jac/dku505

Al-Hatmi AM, Meis JF, de Hoog GS. Fusarium: Molecular diversity and intrinsic drug resistance. PLoS Pathog. 2016;12:e1005464. https://doi.org/10.1371/journal.ppat.1005464

Nazzaro F, Fratianni F, Coppola R, Feo VD. Essential oils and antifungal activity. Pharmaceuticals (Basel). 2017;10:86. https://doi.org/10.3390/ph10040086

Debonne E, van Bockstaele F, De Leyn I, Devlieghere F, Eeckhout M. Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and Penicillium paneum through application in par-baked wheat and sourdough bread. LWT Food Sci Technol. 2018;87:368-78. https://doi.org/10.1016/j.lwt.2017.09.007

Mandras N, Nostro A, Roana J, Scalas D, Banche G, Ghisetti V, et al. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC Complement Med Ther. 2016;16:330. https://doi.org/10.1186/s12906-016-1316-5

Mokbel AA, Alharbi AA. Antifungal effects of basil and camphor essential oils against Aspergillus flavus and A. parasiticus. Aust J Crop Sci. 2015;9:532. https://doi.org/10.3316/INFORMIT.298113037575673

Bahraminejad S, Seifolahpour B, Amiri R. Antifungal effects of some medicinal and aromatic plant essential oils against Alternaria solani. J Crop Prot. 2017;5:603-16.

Roselló J, Sempere F, Sanz-Berzosa I, Chiralt A, Santamarina MP. Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides. J Essent Oil-Bear Plants. 2015;18:359-67. https://doi.org/10.1080/0972060X.2015.1010601

Sharma A, Rajendran S, Srivastava A, Sharma S, Kundu B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. Lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J Biosci Bioeng. 2017;123:308-13. https://doi.org/10.1016/j.jbiosc.2016.09.011

Cavaleiro C, Salgueiro L, Gonçalves MJ, Hrimpeng K, Pinto J, Pinto E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J Nat Med. 2015;69:241-8. https://doi.org/10.1007/s11418-014-0884-2

Basak S, Guha P. Use of predictive model to describe sporicidal and cell viability efficacy of betel leaf (Piper betle L.) essential oil on Aspergillus flavus and Penicillium expansum and its antifungal activity in raw apple juice. LWT Food Sci Technol. 2017;80:510-6. https://doi.org/10.1016/j.lwt.2017.03.024

Pinto E, Gonçalves MJ, Cavaleiro C, Salgueiro L. Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte species. Molecules. 2017;22:1595. https://doi.org/10.3390/molecules22101595

Rao J, Chen B, McClements DJ. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annu Rev Food Sci Technol. 2019;10:365-87. https://doi.org/10.1146/annurev-food-032818-121727

Surabhi S, Singh BK. Computer aided drug design: An overview. J Drug Deliv Ther. 2018;8:504-9. https://doi.org/10.22270/jddt.v8i5.1894

Medina-Franco JL. Grand challenges of computer-aided drug design: The road ahead. Front Drug Des Discov. 2021;1:728551. https://doi.org/10.3389/fddsv.2021.728551

Toropov AA, Toropova AP. QSPR/QSAR: State-of-art, weirdness, the future. Molecules. 2020;25:1292. https://doi.org/10.3390/molecules25061292

Achary PG. Applications of quantitative structure–activity relationships (QSAR) based virtual screening in drug design: A review. Mini-Rev Med Chem. 2020;20:1375-88. https://doi.org/10.2174/1389557520666200429102334

Rasooli I, Mirmostafa SA. Bacterial susceptibility to and chemical composition of essential oils from Thymus kotschyanus and Thymus persicus. J Agric Food Chem. 2003;51:2200-5. https://doi.org/10.1021/jf0261755

Rasooli I, Fakoor MH, Yadegarinia D, Gachkar L, Allameh A, Rezaei MB. Antimycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils. Int J Food Microbiol. 2008;122:135-9. https://doi.org/10.1016/j.ijfoodmicro.2007.11.048

Andrade-Ochoa S, Correa-Basurto J, Rodríguez-Valdez LM, SánchezTorres LE, Nogueda-Torres B, Nevárez-Moorillón GV. In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae). Chem Cent J. 2018;12:53.


Andrade-Ochoa S, García-Machorro J, Bello M, Rodríguez-Valdez LM, Flores-Sandoval CA, Correa-Basurto J. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I. J Biomol Struct Dyn. 2018;36:2312-30. https://doi.org/10.1080/07391102.2017.1352538

Todeschini R. (2006). Molecular descriptors, QSAR, chemometrics and chemoinformatics – Dragon software for Windows (Version 5.4) [Windows]. Milano: Talete SRL. Available at: http://www.talete.mi.it/

Koopmans T. Über die zuordnungwellenfunktionen von und zuden eigenwerteneinzelnen elektronenátomoseines. Physica. 1934;1:104-13.

Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys. 1981;55:117-29. https://doi.org/10.1016/0301-0104(81)85090-2

Todeschini R, Consonni V, Mauri A, Pavan M. MobyDigs software for regression and classification models by genetic algorithms. Data Handling Sci Technol. 2003;23:141-67. https://doi.org/10.1016/S0922-3487(03)23005-7

García-Ruiz JC, Amutio E, Pontón J. Infección fúngica invasora en pacientes inmunodeficientes. Rev Iberoam Micol. 2004;21:55-62.

Holding KJ, Dworkin MS, Wan PCT, Hanson DL, Klevens RM, Jones JL, et al. Adult and adolescent spectrum of HIV disease project. Aspergillosis among people infected with human immunodeficiency virus: Incidence and survival. Clin Infect Dis. 2000;31:1253-7. https://doi.org/10.1086/317452

Fraeyman S, Croubels S, Devreese M, Antonissen G. Emerging Fusarium and Alternaria mycotoxins: Occurrence, toxicity and toxicokinetics. Toxins. 2017;9:228. https://doi.org/10.3390/toxins9070228

Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. J Appl Microbiol. 2021;131:2095-113. https://doi.org/10.1111/jam.15032

Bassolé IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17:3989-4006. https://doi.org/10.1016/j.foodchem.2016.09.179

Hu Y, Zhang J, Kong W, Zhao G, Yang M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017;220:1-8. https://doi.org/10.1016/j.foodchem.2016.09.179

Batista BG, Chaves MAD, Reginatto P, Saraiva OJ, Fuentefría AM. Human fusariosis: An emerging infection that is difficult to treat. Rev Soc Bras Med Trop. 2020;53. https://doi.org/10.1590/0037-8682-0013-2020

Portillo-Ruiz MC, Viramontes-Ramos S, Muñoz-Castellanos LN, Gastelum-Franco MG, Nevárez-Moorillón GV. Antifungal activity of Mexican oregano (Lippia berlandieri Shauer). J Food Prot. 2005;68:2713-7. https://doi.org/10.4315/0362-028X-68.12.2713

Ávila-Sosa R, Gastélum-Franco MG, Camacho-Dávila A, Torres-Muñoz JV, Nevárez-Moorillón GV. Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food Bioproc Tech. 2010;3:434-40. https://doi.org/10.1007/s11947-008-0085-7

Portillo-Ruiz MC, Sánchez RAS, Ramos SV, Muñoz JVT, NevárezMoorillón GV. Antifungal effect of Mexican oregano (Lippia berlandieri Schauer) essential oil on a wheat flour-based Medium. J Food Sci. 2012;77. https://doi.org/10.1111/j.1750-3841.2012.02821.x

Andrade-Ochoa S, Chacón-Vargas KF, Sánchez-Torres LE, RiveraChavira BE, Nogueda-Torres B, Nevárez-Moorillón GV. Differential antimicrobial effect of essential oils and their main components: Insights based on the cell membrane and external structure. Membranes. 2021;11:405. https://doi.org/10.3390/membranes11060405

Hadizadeh I, Peivastegan B, Hamzehzarghani H. Antifungal activity of essential oils from some medicinal plants of Iran against Alternaria alternata. Am J Appl Sci. 2009;6:857-61. https://doi.org/10.3844/ajassp.2009.857.861

Perina FJ, Amaral DC, Fernandes RS, Labory CR, Teixeira GA, Alves E. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest Manag Sci. 2015;71:1371-8. https://doi.org/10.1002/ps.3933

Liu Y, Liu S, Luo X, Wu X, Ren J, Huang X, et al. Antifungal activity and mechanism of thymol against Fusarium oxysporum, a pathogen of potato dry rot, and its potential application. Postharvest Biol Technol. 2022;192:112025. https://doi.org/10.1016/j.postharvbio.2022.112025

Gao T, Zhou H, Zhou W, Hu L, Chen J, Shi Z. The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis. Molecules. 2016;21:770. https://doi.org/10.3390/molecules21060770

Numpaque MA, Oviedo LA, Gil JH, García CM, Durango DL. Thymol and carvacrol: Biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae. Trop Plant Pathol. 2011;36:313. https://doi.org/10.1590/S1982-56762011000100001

Moghtader M. Antifungal effects of the essential oil from Thymus vulgaris L. and comparison with synthetic thymol on Aspergillus niger. J Yeast Fungal Res. 2012;3:83-8. https://doi.org/0.5897/JYFR12.023

Zhang J, Ma S, Du S, Chen S, Sun H. Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. J Food Sci Technol. 2019;56:2611-20. https://doi.org/10.1007/s13197-019-03747-0

Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol. 2013;62:1175-83. https://doi.org/10.1099/jmm.0.055467-0

Ahmad A, Khan A, Kumar P, Bhatt RP, Manzoor N. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast. 2011;28:611-7. https://doi.org/10.1002/yea.1890

Shen Q, Zhou W, Li H, Hu L, Mo H. ROS involves the fungicidal actions of thymol against spores of Aspergillus flavus via the induction of nitric oxide. PLoS ONE. 2016;11:e0155647. https://doi.org/10.1371/journal.pone.0155647

Haque E, Irfan S, Kamil M, Sheikh S, Hasan A, Ahmad A, et al. Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology. 2016;85:436-43. https://doi.org/10.1134/S0026261716040093

Hao Y, Zhang J, Sun C, Chen X, Wang Y, Lu H, et al. Thymol induces cell death of Fusarium oxysporum f. sp. niveum via triggering superoxide radical accumulation and oxidative injury in vitro. Agronomy. 2023;13:189. https://doi.org/10.3390/agronomy13010189

Cómo citar
Andrade-Ochoa S, Sánchez-Aldana D, Rodríguez-Valdez LM, Nevárez-Moorillón GV. Evaluación in vitro y QSAR (Quantitative and Structure-Activity Relationship) de la actividad antifúngica de terpenoides obtenidos de aceites esenciales frente a Alternaria alternata y Fusarium oxysporum. biomedica [Internet]. 31 de agosto de 2023 [citado 2 de octubre de 2023];43(Sp. 1):156-69. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/6883

Algunos artículos similares:

Artículos originales


Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
Crossref Cited-by logo
QR Code