Reference values for respiratory parameters in the adult population of Bogotá, D.C., Colombia

María Ximena Rojas, Rodolfo José Dennis, .

Keywords: validation studies, reference values, respiratory function tests, linear models, adult, altitude

Abstract

Introduction. Reference values for pulmonary function parameters, generally applicable to most populations, have shown little validity in the correct interpretation of pulmonary function tests when applied to the adult population in Bogotá.
Objective. To identify which of four prediction models generated for use in populations of a similar ethnic background to that found in Colombia is the most accurate for use in adults in Bogotá.
Materials and methods. 534 subjects (male and female) between 18 and 65 years of age were recruited from a pool of workers employed by three private Bogotá companies. All subjects had resided in Bogotá for at least five years before the initiation of the study. Smokers and those with altered pulmonary function were excluded. Pulmonary function parameters were measured by flow volume curve. The results were analyzed (specifically, the difference between predicted and observed values) and the limits were calculated using the Bland & Altman method. A maximum average prediction error of 5% was accepted as valid for the observed value of each parameter.
Results. The models shown to be valid were as follows: Crapo for forced vital capacity (FVC) in men; Pérez-Padilla for FVC in women and for the ratio forced expiratory volume in the first second (FEV1/FVC) in both sexes, and the Hankinson model for Mexican-Americans, for all parameters in both sexes.
Conclusions. The Hankinson model proved to be the most accurate in predicting all spirometry parameters. However, its poor classification average (7%) is a limitation. In the future, new models with a better predictive accuracy will be required.

Downloads

Download data is not yet available.
  • María Ximena Rojas Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
  • Rodolfo José Dennis Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia Departamento de Medicina Interna, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, D.C., Colombia

References

1. Becklake MR. Concepts of normality applied to the measurement of lung function. Am J Med. 1986;80:1158-63.
2. Miller GJ, Saunders MJ, Gilson RJ, Ashcroft MT. Lung function of healthy boys and girls in Jamaica in relation to ethnic composition, test exercise performance, and habitual physical activity. Thorax. 1977;32:486-96.
3. Damon A. Negro-white differences in pulmonary function (vital capacity, timed vital capacity, and expiratory flow rate). Hum Biol. 1976;38:381-93.
4. Harik-Khan RI, Muller DC, Wise RA. Racial difference in lung function in African-American and white children: effect of anthropometric, socioeconomic, nutritional, and environmental factors. Am J Epidemiol. 2004;160:893-900.
5. Hankinson JL, Kinsley KB, Wagner GR. Comparison of spirometric reference values for Caucasian and African American blue-collar workers. J Occup Environ Med. 1996;38:137-43.
6. Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med. 2000;161:1101-8.
7. Quintero C, Bodin L, Andersson K. Reference spirometric values in healthy Nicaraguan male workers. Am J Ind Med. 1996;29:41-8.
8. Boskabady MH, Keshmiri M, Banihashemi B, Anvary K. Lung function values in healthy non-smoking urban adults in Iran. Respiration. 2002;69:320-6.
9. Gaultier C, Crapo R. Effects of nutrition, growth hormone disturbances, training, altitude and sleep on lung volumes. Eur Respir J. 1997;10:2913-9.
10. Droma T, McCullough RG, McCullough RE, Zhuang JG, Cymerman A, Sun SF, et al. Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m). Am J Phys Anthropol. 1991;86:341-51.
11. Gautier H, Peslin R, Grassino A, Milic-Emili J, Hannhart B, Powell E, et al. Mechanical properties of the lungs during acclimatization to altitude. J Appl Physiol. 1982;52:1407-15.
12. Brusil PJ, Waggener TB, Kronauer RE, Gulesian P. Methods for identifying respiratory oscillations disclose altitude effects. J Appl Physiol. 1980;48:545-56.
13. Frisancho AR, Velásquez T, Sánchez J. Influence of developmental adaptation on lung function at high altitude. Hum Biol. 1973;45:583-94.
14. Cotes JE, Dabbs JM, Hall AM, Lakhera SC, Saunders MJ, Malhotra MS. Lung function of healthy young men in India: contributory roles of genetic and environmental factors. Proc R Soc Lond B Biol Sci. 1975;81:413-25.
15. Cruz JC. Mechanics of breathing in high altitude and sea level subjects. Respir Physiol. 1973;17:146-61.
16. Woolcock AJ, Colman MH, Blackburn CR. Factors affecting normal values for ventilatory lung function. Am Rev Respir Dis. 1972;106:692-709.
17. Greksa LP, Spielvogel H, Paz-Zamora M, Cáceres E, Paredes-Fernández L. Effect of altitude on the lung function of high altitude residents of European ancestry. Am J Phys Anthropol. 1988;75:77-85.
18. Brutsaert TD, Soria R, Caceres E, Spielvogel H, Haas JD. Effect of developmental and ancestral high altitude exposure on chest morphology and pulmonary function in Andean and European/North American natives. Am J Human Biol. 1999;11:383-95.
19. Sliman NA. The effect of altitude on normal pulmonary function tests: a comparison between the Dead Sea area and Amman. Aviat Space Environ Med. 1984;55:1010-4.
20. Wolf C, Staudenherz A, Roggla G, Waldhor T. Potential impact of altitude on lung function. Int Arch Occup Environ Health. 1997;69:106-8.
21. He QC, Lioy PJ, Wilson WE, Chapman RS. Effects of air pollution on children’s pulmonary function in urban and suburban areas of Wuhan, People’s Republic of China. Arch Environ Health. 1993;48:382-91.
22. American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis. 1991;144:1202-18.
23. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Work Group on Standardization of Respiratory Function Tests. European Community for Coal and Steel. Official position of the European Respiratory Society. Rev Mal Respir. 1994;11:5-40.
24. European Community for Steel and Coal. Aide-memoire of spirographic practice for examining ventilatory function. Industrial Health and Medicine Series. Second edition. Luxembuorg: ECSC; 1973.
25. Rodríguez N, Rojas MX, Guevara DP, Dennis RJ, Maldonado D. Generación de valores de referencia para la evaluación de la espirometría: estudio en una población colombiana. Acta Med Colomb. 2002;27:389-97.
26. Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis. 1981;123:659-64.
27. Knudson RJ, Slatin RC, Lebowitz MD, Burrows B. The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am Rev Respir Dis. 1976;113:587-600.
28. Pérez-Padilla JR, Regalado-Pineda J, Vázquez-García JC. Reproducibility of spirometry in Mexican workers and international reference values. Salud Pública Mex. 2001;43:113-21.
29. Ip MS, Karlberg EM, Karlberg JP, Luk KD, Leong JC. Lung function reference values in Chinese children and adolescents in Hong Kong. I. Spirometric values and comparison with other populations. Am J Respir Crit Care Med. 2000;162:424-9.
30. Baur X, Isringhausen-Bley S, Degens P. Comparison of lung-function reference values. Int Arch Occup Environ Health. 1999;72:69-83.
31. Neder JÁ, Andreoni S, Castelo-Filho A, Nery LE. Reference values for lung function tests. I. Static volumes. Braz J Med Biol Res. 1999;32:703-17.
32. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159:179-87.
33. Maldonado D, Dennis RJ, Casa A, Rodríguez N, Rojas MX, Guevara DP. Humo de caña de azúcar y compromiso del sistema respiratorio. Rev Colomb Neumol. 2000;12:S183.
34. Snee RD. Validation of regression models: methods and examples. Technometrics. 1987;19:415-28.
35. Holger D, Munk A. Validation of linear regression models. Ann Stat. 1998;26:778-800.
36. Snee RD. Validation of regression models: Methods and examples. Technometrics. 1977;19:415-28.
37. Kleinbaum DG. Selecting the best regression ecuation. In: Kleinbaum DG, Kupper LL, Muller KE, Nizam A, editors. Applied regression analisys and other multivariable methods. 3 edition. Boston: PWS Kent; 1988. p. 387-422.
38. Ferris BG. Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis. 1978;118:1-120.
39. Dennis RJ, Maldonado D, Norman S, Baena E, Martínez G. Woodsmoke exposure and risk for obstructive airways disease among women. Chest. 1996;109:115-9.
40. Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B. Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis 1983;127:725-34.
41. Quadrelli S, Roncoroni A, Montiel G. Assessment of respiratory function: influence of spirometry reference values and normality criteria selection. Respir Med. 1999;93:523-35.
42. McDonnell WF, Enright PL, Abbey DE, Knutsen SF, Peters JA, Burchette RJ, et al. Spirometric reference equations for older adults. Respir Med. 1998;92:914-21.
43. Maxwell SE. Sample size and multiple regression analysis. Psychol Methods. 2000;5:434-58.
44. American Thoracic Society. Standarization of spirometry, 1994 Update. Am J Respir Crit Care Med. 1995;152:1107-36.
45. Cruciani G, Baroni M, Clementi S, Costantino G, Riganelli D, Skagerberg B. Predictive ability of regression models. Part I: Standard deviation of prediction errors (SDEP). J Chemometr. 2003;6:335-46.
46. Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19:453-73.
47. Pérez-Padilla R, Hallal PC, Vázquez-García JC, Muiño A, Maquez Márquez? M, López MV, et al. Impact of bronchodilator use on the prevalence of COPD in population-based samples. COPD. 2007;4:113-20.
48. Gulsvik A, Tosteson T, Bakke PS, Humerflt S, Weiss ST, Speizer FE. Expiratory and inspiratory forced vital capacity and one-second forced volume in asymptomatic never-smokers in Norway. Clin Physiol. 2001;21:648-60.
49. Weitz CA, Garruto RM, Chin CT, Liu JC, Liu RL, He X. Lung function of Han Chinese born and raised near sea level and at high altitude in Western China. Am J Human Biol. 2002;14:494-510.
50. Cepeda S, Pérez A. Estudios de concordancia: intercambiabilidad en sistemas de medición. En: Ruiz A, Morillo L, editores. Epidemiología clínica: investigación clínica aplicada. Bogota D.C.: Panamericana; 2004. p. 293-307.
51. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948-68.
52. American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis. 1991;144:1202-18.
How to Cite
1.
Rojas MX, Dennis RJ. Reference values for respiratory parameters in the adult population of Bogotá, D.C., Colombia. biomedica [Internet]. 2010 Mar. 1 [cited 2024 May 19];30(1):82-94. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/156

Some similar items:

Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code