The intergenic region of the histone h2a gene supports two major lineages of Trypanosoma rangeli

Brian Alejandro Suárez, Claudia Liliana Cuervo, Concepción Judith Puerta, .

Keywords: Trypanosoma/genetics, DNA, intergenic, genes, histones/genetics, conserved sequence, phylogeny

Abstract

Introduction. Trypanosoma rangeli has been classified in the KP1(+) and KP1(-) subpopulations, based on the mini-exon gene and kinetoplast DNA minicircle amplification profiles.
Objective. The intergenic region of the histone h2a gene was compared between KP1(+) and KP1(-) strains of T. rangeli to substantiate this classification.
Materials and methods. The amplification, cloning and sequencing of the h2a gene intergenic region was undertaken for the Tre and 5048 [KP1(-)] strains for comparison with the Choachí [KP1(+)] strain. These sequences, along with those previously reported for the KP1 (+) and KP1 (-) H14 and C23 strains, were used to reconstruct phylogenetic trees based on the "neighborjoining", maximum parsimony and maximum likelihood methods. The Y strain of Trypanosoma cruzi was chosen as the outgroup.
Results. Intra-specific heterogeneity was observed in the size of the gene region under study, supported by bootstarp values of 85% (neighbor-joining), 66% (maximum parsimony) and 57% (maximum likelihood). The KP1(-) strains were grouped apart, clearly differentiated from the KP1(+) strains. The latter demonstrated a higher intra-specific heterogeneity, both in sequence length and composition. In addition, a closer phylogenetic relationship between T. rangeli and T. cruzi was found to be more closely related to one another than to T. rangeli and Trypanosoma brucei.
Conclusion. Phylogenetic analyses of analyzed strains based on the intergenic region of the h2a genes supported the T. rangeli grouping in two major subpopulations known as KP1(+) and KP1(-) strains. However, a higher number of strains are needed to confirm this finding.

Downloads

Download data is not yet available.
  • Brian Alejandro Suárez Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D. C., Colombia
  • Claudia Liliana Cuervo Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D. C., Colombia
  • Concepción Judith Puerta Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D. C., Colombia

References

1. Guhl F, Vallejo GA. Trypanosoma (Herpetosoma) rangeli Tejera, 1920: an updated review. Mem Inst Oswaldo Cruz. 2003;98:435-42.
2. D'Alessandro-Bacigalupo A, Gore-Saravia N. Trypanosoma rangeli. En: Gilles HM, editor. Protozoal diseases. New York: Arnold Publishers; 1999. p.398-410.
3. Basso B, Moretti ER, Vottero-Cima E. Immune response and Trypanosoma cruzi infection in Trypanosoma rangeli-immunized mice. Am J Trop Med Hyg. 1991;44:413-9.
4. Steindel M, Dias Neto E, Pinto CJ, Grisard EC, Menezes CL, Murta SM, et al. Randomly amplified polymorphic DNA (RAPD) and isoenzyme analysis of Trypanosoma rangeli strains. J Eukaryot Microbiol.
1994;41:261-7.
5. Grisard EC, Campbell DA, Romanha AJ. Mini-exon gene sequence polymorphism among Trypanosoma rangeli strains isolated from distinct geographical regions. Parasitology. 1999;118:375-82.
6. Vallejo GA, Guhl F, Carranza JC, Lozano LE, Sánchez JL, Jaramillo JC, et al. kDNA markers define two major Trypanosoma rangeli lineages in Latin America. Acta Trop. 2002;81:77-82.
7. Vallejo GA, Guhl F, Carranza JC, Moreno J, Triana O, Grisard EC. Parity between kinetoplast DNA and mini-exon gene sequences supports either clonal evolution or speciation in Trypanosoma rangeli strains isolated from Rhodnius colombiensis, R. Pallescens and R. prolixus in Colombia. Infect Genet Evol. 2003;3:39-45.
8. Urrea DA, Carranza JC, Cuba CA, Gurgel-Gonçalves R, Guhl F, Schofield CJ, et al. Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Perú, R.
colombiensis in Colombia and R. pallescens in Panamá, supports a co-evolutionary association between parasites and vectors. Infect Genet Evol. 2005;5:123-9.
9. Schofield CJ, Dujardin JP. Theories on the evolution of Rhodnius. Actualizaciones Biológicas. 1999;21:183-97.
10. Vallejo GA, Guhl F, Carranza JC, Triana O, Pérez G, Ortiz PA, et al. Interacción tripanosoma-vectorvertebrado y su relación con la sistemática y la epidemiología de la tripanosomiasis americana.
Biomédica. 2007;27 (Suppl. 1):110-8.
11. Sánchez IP, Pulido XC, Carranza JC, Triana O, Vallejo GA. Inmunidad natural de Rhodnius prolixus (Hemiptera: Reduviidae: Triatominae) frente a la infección con Trypanosoma (Herpetosoma) rangeli
KP1(-) aislados de Rhodnius pallescens, R. colombiensis y R. ecuadoriensis. Revista de la Asociación Colombiana de Ciencias Biológicas. 2005;17:108-18.
12. Cuervo C, López MC, Puerta C. The Trypanosoma rangeli histone H2A gene sequence serves as a differential marker for KP1 strains. Infect Genet Evol. 2006;6:401-9.
13. Morales L, Romero I, Diez H, Del Portillo P, Montilla M, Nicholls S, et al. Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Exp Parasitol. 2002;102:72-80.
14. Schottelius J. Neuraminidase fluorescence test for differentiation of Trypanosoma cruzi and Trypanosoma rangeli. Trop Med Parasitol. 1987;38:323-7.
15. Puerta C, Urueña C. Prácticas de Biología Molecular. Colección Biblioteca del Profesional. Bogotá: Editorial Pontificia Universidad Javeriana; 2005. p.24-54.
16. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-402.
17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequences weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994.;22:4673-80.
18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41: 95-8.
19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25.
20. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004; 5:150-63.
21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368-76.
22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20.
23. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160-74.
24. Lanzotti DJ, Kupsco JM, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Drosophila stem-loop binding protein intracellular localization is mediated by phosphorylation and is required for cell cycle-regulated histone mRNA expression. Mol Biol Cell. 2004;15:1112-23.
25. Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990;61:1157-60.
26. Brandao A, Fernandes O. Trypanosoma cruzi: Mutations in the 3' untranslated region of calmodulin gene are specific for lineages T. cruzi I, T. cruzi II, and the Zymodeme III isolates. Exp Parasitol. 2006;112:247-52.
27. Maxson R, Cohn R, Kedes L, Mohun T. Expression and organization of histone genes. Annu Rev Genet. 1983;17:239-77.
28. Thomas MC, Olivares M, Escalante M, Marañón C, Montilla M, Nicholls S, et al. Plasticity of the histone H2A genes in a Brazilian and six Colombian strains of Trypanosoma cruzi. Acta Trop. 2000;75:203-10.
29. Puerta C, Cuervo P, Thomas MC, López MC. Molecular characterization of the Histone H2A gene from the parasite Trypanosoma rangeli. Parasitol Res. 2000;86:916-22.
30. Urueña C, Santander SP. Determinación de la localización cromosómica de los genes que codifican para la proteína KMP11 de Trypanosoma rangeli. [Tesis de Pregrado en Bacteriología]. Bogotá: Facultad de Ciencias. Pontificia Universidad Javeriana; 2003.
31. da Silva RA, Bartholomeu DC, Teixeira SM. Control mechanisms of tubulin gene expression in Trypanosoma cruzi. Int J Parasitol. 2006;36:87-96.
32. Vázquez M, Lorenzi H, Schijman AG, Ben-Dov C, Levin MJ. Analysis of the distribution of SIRE in the nuclear genome of Trypanosoma cruzi. Gene. 1999;239:207-16.
33. Da Silva FM, Noyes H, Campaner M, Junqueira AC, Coura JR, Añez N, et al. Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences. Parasitology. 2004;129:549-61.
34. Maia da Silva F, Rodriguez AC, Campaner M, Takata CS, Brigido MC, Junqueira AC, et al. Randomly amplified polymorphic DNA analysis of Trypanosoma rangeli and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. Parasitology. 2004;128:283-94.
How to Cite
1.
Suárez BA, Cuervo CL, Puerta CJ. The intergenic region of the histone h2a gene supports two major lineages of Trypanosoma rangeli. biomedica [Internet]. 2007 Sep. 1 [cited 2024 May 18];27(3):410-8. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/203

Some similar items:

Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code