Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae

Ana Victoria Suescún, Juan Rodrigo Cubillos, María Mercedes Zambrano, .

Keywords: Klebsiella pneumoniae, opportunistic infections, biofilms, bacterial fimbriae, bacterial adhesion, microbial genetics

Abstract

Introduction. Klebsiella pneumoniae is an opportunistic pathogen commonly associated with nosocomial infections. The persistence and pathogenesis of this microorganism is associated with its capacity to form biofilms. Pili or fimbriae are among the factors implicated in biofilm formation in diverse microorganisms. Klebsiella pneumoniae expresses both type 1 and type 3 fimbriae-proteinacious structures that mediate adhesion to epithelial cells and are important for virulence.
Objective. To identify genes involved in biofilm formation in K. pneumoniae.
Materials and methods. Klebsiella pneumoniae MZ2098 was subjected to mutagenesis with the miniTn10Km transposon and screened for defects in ability to form biofilms. The bacteria were curltured in 96-well plates using BHI-MOPS medium. Selected mutants were analyzed under diverse conditions by varying culture conditions and growth surfaces. Genes interrupted by the transposon were identified by arbitrary polymerase chain reaction and sequencing.
Results. Thirty-seven mutants deficient in biofilm formation were obtained by screening 9,300 transposon-insertion mutants in K. pneumoniae. Three of these mutants had insertions in genes that affected fimbrial formation, and their phenotypes showed severe defects in the capacity to adhere to surfaces in vitro.
Conclusion. Type 1 and type 3 fimbriae are important factors for adhesion and formation of multicellular aggregates of K. pneumoniae.

Downloads

Download data is not yet available.
  • Ana Victoria Suescún Grupo de Genética Molecular, Corporación CorpoGen, Bogotá, DC, Colombia
  • Juan Rodrigo Cubillos Grupo de Genética Molecular, Corporación CorpoGen, Bogotá, DC, Colombia
  • María Mercedes Zambrano Grupo de Genética Molecular, Corporación CorpoGen, Bogotá, DC, Colombia

References

1. Tsay RW, Siu LK, Fung CP, Chang FY. Characteristics of bacteremia between communityacquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 2002;162:1021-7.
2. Schembri MA, Blom J, Krogfelt KA, Klemm P. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 2005;73:4626-33.
3. Maroncle N, Balestrino D, Rich C, Forestier C. Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signaturetagged mutagenesis. Infect Immun 2002;70:4729-34.
4. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2000;44:1818-24.
5. Bouza E, Cercenado E. Klebsiella and Enterobacter: antibiotic resistance and treatment implications. Semin Respir Infect 2002;17:215-30.
6. Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001;9:34-9.
7. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167-93.
8. Langstraat J, Bohse M, Clegg S. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 2001;69:5805-12.
9. Austin JW, Sanders G, Kay WW, Collinson SK. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 1998;162:295-301.
10. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998;30:295-304.
11. Heilmann C, Hussain M, Peters G, Gotz F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 1997;24:1013-24.
12. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998;30:285-93.
13. Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int J Med Microbiol 2000;290:27-35.
14. Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol 2003;154:9-16.
15. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. Embo J 2000;19:2803-12.
16. Alexeyev MF, Shokolenko IN. Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. Gene 1995;160:59-62.
17. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989. p.1659.
18. Miller JH. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Plainview: Cold Spring Harbor Laboratory Press; 1992. p.496.
19. Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 1999;34:586-95.
20. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 1998;28:449-61.
21. Lai YC, Peng HL, Chang HY. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 2003;185:788-800.
22. Frishman D, Mokrejs M, Kosykh D, Kastenmuller G, Kolesov G, Zubrzycki I, et al. The PEDANT genome database. Nucleic Acids Res 2003;31:207-11.
23. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al . Artemis: Sequence visualization and annotation. Bioinformatics 2000;16:944-5.
24. Hagiwara H, Naitou M, Shibata T, Hanaoka F, Eki T, Murakami Y. Identification of the coding region of Saccharomyces cerevisiae chromosome VI using the computer program GenMark. DNA Res 1995;2:247-53.
25. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004;32:W20-5.
26. Zogaj X, Bokranz W, Nimtz M, Romling U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 2003;71:4151-8.
27. Joyce SA, Dorman CJ. A Rho-dependent phasevariable transcription terminator controls expression of the FimE recombinase in Escherichia coli. Mol Microbiol 2002;45:1107-17.
28. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, et al. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 2002;43:793-808.
29. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.
30. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000;54:49-79.
How to Cite
1.
Suescún AV, Cubillos JR, Zambrano MM. Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae. biomedica [Internet]. 2006 Dec. 1 [cited 2024 May 16];26(4):528-37. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/322

Some similar items:

Published
2006-12-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code