Comparative analysis of the antimicrobial activity of larval secretions and excretions from Calliphora vicina and Sarconesiopsis magellanica (Diptera: Calliphoridae)

Francy Novoa-Palomares , Laura Salas-Díaz , Cindy Pérez-Téllez , Ingred Pinillos-Medina, Orlando Torres-García, Felio J. Bello , .

Keywords: Diptera, Gram-positive bacteria, Gram-negative bacteria, modalities, secretion and excretion, anti-bacterial agents, larva

Abstract

Introduction: The growing resistance to antibiotics worldwide represents a global threat to public health. The larval excretions and secretions derived from necrophagous flies from the Calliphoridae family could represent a promising source for counteracting their effects.
Objective: To compare the antimicrobial activity of Calliphora vicina and Sarconesiopsis magellanica (Diptera: Calliphoridae) native excretions and secretions and those weighing more than 10 kDa and less.
Materials and methods: We used the turbidimetry technique for the bioassay; we determined the minimum inhibitory concentration (MIC) for excretions and secretions weighing less than 10 kDa.
Results: Calliphora vicina and S. magellanica native excretions and secretions and those weighing less than 10 kDa exhibited potent antibacterial activity against three Staphylococcus aureus strains and four Gram-negative bacteria; those weighing less than 10 kDa were more effective than the native ones in the two species of flies evaluated here. Furthermore, excretions and secretions weighing less than 10 kDa had the same effectiveness, except in the MIC trials where S. magellanica excretions and secretions weighing less than 10 kDa were more potent against all the bacteria evaluated, except for S. aureus ATCC 25923. Excretions and secretions weighing more than 10 kDa did not inhibit bacterial growth.
Conclusions: These results potentially validate these substances as an important source for isolating and characterizing antimicrobial agents.

Downloads

Download data is not yet available.

References

Pape T, Wolff M, Amat EC. Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae, Sarcophagidae) de Colombia. Biota Colombiana. 2004;39:201-8. https://doi.org/10.21068/BC.V5I2.145

Camacho G. Sucesión de la entomofauna cadavérica y ciclo vital de Calliphora vicina (Diptera: Calliphoridae) como primera especie colonizadora, utilizando cerdo blanco. Revista Colombiana de Entomología. 2005;31:35-9.

Francesconia F, Lupi O. Myiasis. Clin Microbiol Rev. 2012;25:79-105. https://doi.org/10.1128/CMR.00010-11

Getachew S, Gebre-Michael T, Erko B, Balkew M, Medhin G. Non-biting cyclorrhaphan flies (Diptera) as carriers of intestinal human parasites in slum areas of Addis Ababa, Ethiopia. Acta Trop. 2007;103:186-94. https://doi.org/10.1016/j.actatropica.2007.06.005

Sharma R, Kumar Garg R, Gaur JR. Various methods for the estimation of the post mortem interval from Calliphoridae: A review. Egypt J Forensic Sci. 2015;5:1-12. https://doi.org/10.1016/j.ejfs.2013.04.002

Sherman RA. Maggot therapy takes us back to the future of wound care: New and improved maggot therapy for the 21st. century. J Diabetes Sci Technol. 2009;3:336-44. https://doi.org/10.1177/193229680900300215

Sherman RA. Mechanisms of maggot-induced wound healing: What do we know, and where do we go from here? Evidence-Based Complement Altern Med. 2014:2014:1-13. https://doi.org/10.1155/2014/592419

Choudhary V, Choudhary M, Pandey S, Chauhan VD, Hasnani JJ. Maggot debridement therapy as primary tool to treat chronic wound of animals. Vet World. 2016;9:403-9. https://doi.org/10.14202/vetworld.2016.403-409

van der Plas MJA, Jukema GN, Wai SW, Dogterom-Ballering HCM, Lagendijk EI, van Gulpen C, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;61:117-22. https://doi.org/10.1093/jac/dkm407

Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M. Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol. 2009;38:161-6. https://doi.org/10.1603/0022-2585-38.2.161

Parnés A, Lagan KM. Larval therapy in wound management: A review. Int J Clin Pract. 2007;61:488-93. https://doi.org/10.1111/j.1742-1241.2006.01238.x

Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24:10-20. https://doi.org/10.1038/nm.4465

Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect. 2004;6:1297-304. https://doi.org/10.1016/j.micinf.2004.08.011

Hassan MI, Amer MS, Hammad KM, Zidan MM. Antimicrobial activity for excretion and secretion. J Egypt Soc Parasitol. 2016;46:179-84. https://doi.org/10.12816/0026163

Díaz-Roa A, Gaona MA, Segura NA, Suárez D, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity. Acta Trop. 2014;136:37-43. https://doi.org/10.1016/j.actatropica.2014.04.018

Barnes KM, Gennard DE, Dixon RA. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull Entomol Res. 2010;100:635-40. https://doi.org/10.1017/S000748530999071X

Ratcliffe NA, Vieira CS, Mendonça PM, Caetano RL, Queiroz MM de C, Garcia ES, et al. Detection and preliminary physico-chemical properties of antimicrobial components in the native excretions/secretions of three species of Chrysomya (Diptera: Calliphoridae) in Brazil. Acta Trop. 2015;147:6-11. https://doi.org/10.1016/j.actatropica.2015.03.021

Fonseca-Muñoz A, Pérez-Pacheco R, Ortega-Morales BO, Reyes-Estebanez M, Vásquez-López A, Chan-Bacab M, et al. Bactericidal activity of Chrysomya rufifacies and Cochliomyia macellaria (Diptera: Calliphoridae) larval excretions-secretions against Staphylococcus aureus (Bacillales: Staphylococcaceae). J Med Entomol. 2019;56:1598-604. https://doi.org/10.1093/jme/tjz109

Amat E, Vélez MC, Wolff M. Illustrated key for identification to genera and species of blowflies (Diptera: Calliphoridae) of Colombia. Caldasia. 2008;30:231-44.

Mitchell AM, Mitchell TJ. Streptococcus pneumoniae: Virulence factors and variation. Clin Microbiol Infect. 2010;16:411-8. https://doi.org/10.1111/j.1469-0691.2010.03183.x

Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, et al. The antibacterial activity against MRSA strains and other bacteria of a <500 Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect. 2008;10:325-33. https://doi.org/10.1016/j.micinf.2007.12.011

Čeřovský V, Žďárek J, Fučík V, Monincová L, Voburka Z, Bém R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci. 2010;67:455-66. https://doi.org/10.1007/s00018-009-0194-0

Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Med Vet Entomol. 2010;24:375-81. https://doi.org/10.1111/j.1365-2915.2010.00902.x

Van der Plas MJA, Dambrot C, Dogterom-Ballering HCM, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother. 2010;65:917-23. https://doi.org/10.1093/jac/dkq042

Cazander G, Pawiroredjo JS, Vandenbroucke-Grauls CMJE, Schreurs MWJ, Jukema GN. Synergism between maggot excretions and antibiotics. Wound Repair Regen. 2010;18:637-42. https://doi.org/10.1111/j.1524-475X.2010.00625.x

Esparza G. Bacterias Gram negativas resistentes a carbapenémicos en Colombia: un desafío continuo al sistema de salud. Infectio. 2020;24:55-6. https://doi.org/10.22354/in.v24i2.831

Arora S, Baptista C, Lim CS. Maggot metabolites and their combinatory effects with antibiotic on Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2011;10:6. https://doi.org/10.1186/1476-0711-10-6

Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, et al. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gramnegative bacteria. J Antimicrob Chemother. 2019;74:96-107. https://doi.org/10.1093/jac/dky386

Díaz-Roa A, Espinoza-Culupú A, Torres-García O, Borges MM, Avino IN, Alves FL, et al. Sarconesin II, a new antimicrobial peptide isolated from Sarconesiopsis magellanica excretions and secretions. Molecules. 2019;24:1-27. https://doi.org/10.3390/molecules24112077

Díaz-Roa A, Patarroyo MA, Bello FJ, Da Silva PI. Sarconesin: Sarconesiopsis magellanica blowfly larval excretions and secretions with antibacterial properties. Front Microbiol. 2018;9:1-13. https://doi.org/10.3389/fmicb.2018.02249

Alnaimat SM, Wainwright M, Aladaileh SH. An initial in vitro investigation into the potential therapeutic use of Lucilia sericata maggot to control superficial fungal infections. Jordan J Biol Sci. 2013;6:137-42. https://doi.org/10.12816/0000271

Evans R, Dudley E, Nigam Y. Detection and partial characterization of antifungal bioactivity from the secretions of the medicinal maggot, Lucilia sericata. Wound Repair Regen. 2015;23:361-8. https://doi.org/10.1111/wrr.12287

van der Plas MJA, van der Does AM, Baldry M, Dogterom-Ballering HCM, van Gulpen C, van Dissel JT, et al. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 2007;9:507-14. https://doi.org/10.1016/j.micinf.2007.01.008

Pöppel AK, Kahl M, Baumann A, Wiesner J, Gökçen A, Beckert A, et al. A Jonahlike chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect Biochem Mol Biol. 2016;70:138-47. http://doi.org/10.1016/j.ibmb.2015.11.012

Kahl M, Gôkçen A, Fischer S, Bäumer M, Wiesner J, Lochnit G, et al. Maggot excretion products from the blowfly Lucilla sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions. Thromb Haemost. 2015;114:277-88. http://doi.org/10.1160/TH14-06-0499

How to Cite
1.
Novoa-Palomares F, Salas-Díaz L, Pérez-Téllez C, Pinillos-Medina I, Torres-García O, Bello FJ. Comparative analysis of the antimicrobial activity of larval secretions and excretions from Calliphora vicina and Sarconesiopsis magellanica (Diptera: Calliphoridae). biomedica [Internet]. 2022 Mar. 1 [cited 2024 May 19];42(1):54-66. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6067

Some similar items:

Published
2022-03-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code