Clinical validation of the isothermal RT-LAMP test for rapid diagnosis of SARS-CoV-2

Leidy Hurtado , Diana Díaz , Katherine Escorcia, Laura Flórez , Yesit Bello , Yirys Díaz , Elkin Navarro , Leonardo C. Pacheco, Nataly Galán , Ronald Maestre , Antonio Acosta, Lisandro A. Pacheco , .

Keywords: COVID-19/diagnosis, molecular diagnostic techniques, sensitivity and specificity, point-of-care testing

Abstract

Introduction: Since the first report in Wuhan (China) in 2019, the SARS-CoV-2 virus has spread throughout the world, with a significant impact in public health. To contain its transmission, the WHO has encouraged the development of rapid, simple, sensitive and specific tests that complement qRT-PCR, as the gold standard. RT-LAMP has shown to be a good alternative to detect SARS-CoV-2 in different fluid samples.
Objective: To validate the colorimetric RT-LAMP technique using two sets of primers targeting N gene of SARS-CoV-2 in 117 nasopharyngeal swab samples previously confirmed by RT-qPCR, using the Charité/Berlin protocol.
Material and methods: A total of 153 nasopharyngeal swab samples from individuals with suspected COVID-19 were subjected to qRT-PCR and RT-LAMP using a commercial
colorimetric kit (NEB, Germany). RT-LAMP was performed using both extracted RNA samples and raw samples without prior RNA extraction, and the result was assessed by a simple color change in the reaction.
Results: Sensitivity and specificity for the previously reported RT-LAMP primers (Broughton set) targeting N gene of SARS-CoV-2 were 0.97 (0.85-1.00) and 0.81 (0.65-0.92) respectively, with CI95%. The Lalli primers targeting another region of the N gene used showed a sensitivity value of 0.96 (0.78-1.00) and a specificity of 0.77 (0.55-0.92). Without RNA extraction we found a sensitivity value of 0.95 (0.74, 1.00) and a specificity of 0.88 (0.64, 0.99). A sensitivity value of 0.95 (0.74-1.00) and a specificity 0.88 (0.64-0.99) were found without prior RNA extraction.
Conclusion: Taking together, the results showed that RT-LAMP technique could be considered as a rapid diagnostic test, easy to perform, free of sophisticated equipment, sensitive and specific to diagnose SARS-CoV-2 in nasopharyngeal swabs with and without prior RNA extraction, allowing its implementation in places with scarce resources.

Downloads

Download data is not yet available.
  • Leidy Hurtado División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia https://orcid.org/0000-0001-8371-5121
  • Diana Díaz División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia https://orcid.org/0000-0002-2228-3799
  • Katherine Escorcia Programa de Microbióloga, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0002-3135-6101
  • Laura Flórez Programa de Microbióloga, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0002-8670-8493
  • Yesit Bello Unidad de Genética y Biología Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0003-1006-0042
  • Yirys Díaz División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia https://orcid.org/0000-0003-3255-6743
  • Elkin Navarro Unidad de Genética y Biología Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia; Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0001-7567-6409
  • Leonardo C. Pacheco Unidad de Genética y Biología Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia; Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0002-5770-3706
  • Nataly Galán Unidad de Genética y Biología Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia; Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0002-2096-7900
  • Ronald Maestre Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia; Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0002-5858-9829
  • Antonio Acosta Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia; Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0001-7443-3982
  • Lisandro A. Pacheco Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia; Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia https://orcid.org/0000-0002-9248-4596

References

Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533-4. https://doi.org/10.1016/S1473-3099(20)30120-1

Chiem K, Morales-Vásquez D, Park JG, Platt RN, Anderson T, Walter MR, et al. Generation and characterization of recombinant SARS-CoV-2 expressing reporter genes. J Virol. 2021;95:e02209-20. https://doi.org/10.1128/JVI.02209-20

Jegerlehner S, Suter-Riniker F, Jent P, Bittel P, Nagler M. Diagnostic accuracy of a SARSCoV-2 rapid antigen test in real-life clinical settings. Int J Infect Dis. 2021;109:118-22. https://doi.org/10.1016/j.ijid.2021.07.010

Maricic T, Nickel O, Aximu-Petri A, Essel E, Gansauge M, Kanis P, et al. A direct RTqPCR approach to test large numbers of individuals for SARS-CoV-2. PLoS ONE. 2020;15:e0244824. https://doi.org/10.1371/journal.pone.0244824

Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol. 2021;59:e00745-20. https://doi.org/10.1128/JCM.00745-20

Xiong D, Dai W, Gong J, Li G, Liu N, Wu W, et al. Rapid detection of SARS-CoV-2 with CRISPR-Cas12a. PLOS Biol. 2020;18:e3000978. https://doi.org/10.1371/journal.pbio.3000978

Ghosh P, Chowdhury R, Hossain ME, Hossain F, Miah M, Rashid MdU, et al. Evaluation of recombinase-based isothermal amplification assays for point-of-need detection of SARSCoV-2 in resource-limited settings. Int J Infect Dis.;114:105-11. https://doi.org/10.1016/j.ijid.2021.11.007

Liang Y, Lin H, Zou L, Zhao J, Li B, Wang H, et al. CRISPR-Cas12a-based detection for the major SARS-CoV-2 variants of concern. Microbiol Spectr. 2021;9:e01017-21. https://doi.org/10.1128/Spectrum.01017-21

Ma L, Yin L, Li X, Chen S, Peng L, Liu G, et al. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. Biosens Bioelectron. 2022;195:113646. https://doi.org/10.1016/j.bios.2021.113646

Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:223-9. https://doi.org/10.1006/mcpr.2002.0415

Tanner NA, Zhang Y, Evans TC. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques. 2015;58:59-68. https://doi.org/10.2144/000114253

Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcriptionloop-mediated isothermal amplification. PLoS ONE. 2020;15:e0234682. https://doi.org/10.1371/journal.pone.0234682

Fischbach J, Xander NC, Frohme M, Glökler JF. Shining a light on LAMP assays. A comparison of LAMP visualization methods including the novel use of berberine. BioTechniques. 2015;58:189-94. https://doi.org/10.2144/000114275

Park GS, Ku K, Baek SH, Kim SJ, Kim SI, Kim BT, et al. Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Mol Diagn. 2020;22:729-35. https://doi.org/10.1016/j.jmoldx.2020.03.006

Notomi T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:63e-63. https://doi.org/10.1093/nar/28.12.e63

Aliotta JM, Pelletier JJ, Ware JL, Moran LS, Benner JS, Kong H. Thermostable Bst DNA polymerase I lacks a 3’-->5’ proofreading exonuclease activity. Genet Anal Biomol Eng. 1996;12:185-95. https://doi.org/10.1016/S1050-3862(96)80005-2

Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25:2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38:870-4. https://doi.org/10.1038/s41587-020-0513-4

Lalli MA, Langmade JS, Chen X, Fronick CC, Sawyer CS, Burcea LC, et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. Clin Chem. 2021;67:415-24. https://doi.org/10.1093/clinchem/hvaa267

Aranha C, Patel V, Bhor V, Gogoi D. Cycle threshold values in RT-PCR to determine dynamics of SARS-CoV-2 viral load: An approach to reduce the isolation period for COVID-19 patients. J Med Virol. 2021;93:6794-7. https://doi.org/10.1002/jmv.27206

Soni S, Salhotra A, Suar M. Handbook of research on diverse applications of nanotechnology in biomedicine, chemistry, and engineering. Hershey, PA: Engineering Science Reference; 2015. p. 820.

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-74. https://doi.org/10.2307/2529310

Wei S, Kohl E, Djandji A, Morgan S, Whittier S, Mansukhani M, et al. Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction. Sci Rep. 2021;11:2402. https://doi.org/10.1038/s41598-021-81487-y

Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC, Notomi T, et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol. 2011;62:41-8. https://doi.org/10.1111/j.1574-695X.2011.00785.x

Zhang Y, Odiwuor N, Xiong J, Sun L, Nyaruaba RO, Wei H, et al. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRciv. 2020. https://doi.org/10.1101/2020.02.26.20028373

Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LP, Kirrmaier D, et al. A colorimetric RTLAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12:eabc7075. https://doi.org/10.1126/scitranslmed.abc7075

Flynn MJ, Snitser O, Flynn J, Green S, Yelin I, Szwarcwort-Cohen M, et al. A simple direct RT-LAMP SARS-CoV-2 saliva diagnostic. medRciv. 2020. https://doi.org/10.1101/2020.11.19.20234948

Savela ES, Viloria Winnett A, Romano AE, Porter MK, Shelby N, Akana R, et al. Quantitative SARS-CoV-2 viral-load curves in paired saliva samples and nasal swabs inform appropriate respiratory sampling site and analytical test sensitivity required for earliest viral detection. J Clin Microbiol. 2022;60:e01785-21. https://doi.org/10.1128/jcm.01785-21

Klein S, Müller TG, Khalid D, Sonntag-Buck V, Heuser AM, Glass B, et al. SARS-CoV-2 RNA extraction using magnetic beads for rapid large-scale testing by RT-qPCR and RT-LAMP. Viruses. 2020;12:863. https://doi.org/10.3390/v12080863

How to Cite
1.
Hurtado L, Díaz D, Escorcia K, Flórez L, Bello Y, Díaz Y, et al. Clinical validation of the isothermal RT-LAMP test for rapid diagnosis of SARS-CoV-2. biomedica [Internet]. 2022 Oct. 31 [cited 2024 May 19];42(Sp. 2):59-72. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6523

Some similar items:

Published
2022-10-31
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code