Interacción de rotavirus con la proteína disulfuro-isomerasa in vitro y en sistemas celulares

Martha N. Calderón, Carlos Guerrero, Yohana Domínguez, Eliana Garzón, Sandra M. Barreto, Orlando Acosta, .

Palabras clave: rotavirus, proteína disulfuro-isomerasa, receptores virales, intestino delgado, línea celular, cromatografía de afinidad

Resumen

Introducción. La entrada del rotavirus a la célula implica un mecanismo de múltiples pasos; las proteínas virales externas interaccionan con cuatro diferentes integrinas y Hsc70. Recientemente reportamos que la infección por rotavirus disminuye cuando se bloquea la proteína disulfuro-isomerasa de la superficie celular, lo que sugiere su interacción con el rotavirus en el proceso de entrada.
Objetivo. Establecer la interacción del rotavirus con la proteína disulfuro-isomerasa en un sistema in vitro utilizando la proteína aislada de hígado bovino y, en un sistema celular, utilizando vellosidades intestinales de ratón y células MA104.
Materiales y métodos. Se aisló la proteína disulfuro-isomerasa a partir de un homogenizado de hígado bovino utilizando anticuerpos anti-proteína disulfuro-isomerasa acoplados a agarosa mediante enlace hidrazona. La proteína disulfuro-isomerasa purificada se examinó por SDS-PAGE y Western blot y se utilizó para estudiar su interacción in vitro con rotavirus. Esta interacción se comparó con aquella observada en células MA104 y en las vellosidades intestinales de ratón.
Resultados. La proteína disulfuro-isomerasa purificada mostró homogeneidad electroforética y fue capaz de unirse a rotavirus en un sistema in vitro. La interacción proteína-rotavirus fue detectada por ELISA de captura usando la proteína disulfuro-isomerasa bovina purificada y rotavirus de las cepas RRV y silvestre ECwt. La interacción de partículas de rotavirus purificadas con la proteína disulfuro-isomerasa celular se evidenció con ELISA, usando lisado celular después de la inoculación viral.
Conclusión. La interacción rotavirus-proteína disulfuro-isomerasa fue demostrada in vitro, en células MA104 y en vellosidades intestinales de ratón lactante.

Descargas

La descarga de datos todavía no está disponible.
  • Martha N. Calderón Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
  • Carlos Guerrero Departamento de Ciencias Fisiológicas, Instituto de Biotecnología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
  • Yohana Domínguez Departamento de Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia
  • Eliana Garzón Departamento de Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia
  • Sandra M. Barreto Departamento de Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia
  • Orlando Acosta Departamento de Ciencias Fisiológicas, Instituto de Biotecnología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia

Referencias bibliográficas

1. Parashar U, Bresee J, Glass R. Rotavirus and severe childhood diarrhea. Emerg Infect Dis. 2006;12:304-6.
2. Danchin MH, Bines JE. Defeating rotavirus? The Global Recommendation for Rotavirus Vaccination. N Engl J Med. 2009;361:19-21.
3. Khamrin P, Maneekarn N, Peerakome S, Chan-it W, Yagyu F, Okitsu S, et al. Novel porcine rotavirus of genotype P[27] shares new phylogenetic lineage with G2 porcine rotavirus strain. Virology. 2007;361:243-52.
4. Polanco G, González M, Manzano L, Cámara J, Puerto M. Rotavirus en animales asintomáticos: detección y clasificación antigénica. Arch Med Vet. 2004;36:65-70.
5. Pesavento JB, Crawford SE, Estes MK, Prasad BV. Rotavirus proteins: Structure and assembly. Curr Top Microbiol Immunol. 2006;309:189-219.
6. Jayaram H, Estes MK, Prasad VB. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res. 2004;101:67-81.
7. Estes M. Rotaviruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. 4th ed. Philadelphia: Lippincott- Raven Publishers; 2001. p. 1747-85.
8. Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci USA. 1997;94:5389-94.
9. Guerrero CA, Méndez E, Zarate S, Isa P, López S, Arias CF. Integrin αvβ3 mediates rotavirus cell entry. Proc Nat Acad Sci USA. 2000;97:14644-9.
10. Zárate S, Espinosa R, Romero P, Guerrero CA, Arias CF, López S. Integrin α2β1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology. 2000;278:50-4.
11. Hewish M, Takada Y, Coulson BS. Integrins α2β1 and α4β1 can mediate SA11 rotavirus attachment and entry into cells. J Virol. 2000;74:228-36.
12. Ciarlet M, Crawford SE, Cheng E, Blutt SE, Daren A, Rice DA, et al. VLA-2 (α2β1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. J Virol. 2002;76:1109-23.
13. Londrigan SL, Graham KL, Takada Y, Halasz P, Coulson BS. Monkey rotavirus binding to α2β1 integrin requires the α2 I domain and is facilitated by the homologous β1 subunit. J Virol. 2003;77:9486-501.
14. Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, et al. Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αXβ2 and αVβ3 by using VP7 during cell entry. J Virol. 2003;77:9969-78.
15. Graham KL, Fleming FE, Halasz P, Hewish MJ, Nagesha H, Holmes IH, et al. Rotaviruses interact with α4β7 and α4β1 integrins by binding the same integrin domains as natural ligands. J Gen Virol. 2005;86:3397-408.
16. Graham KL, Takada Y, Coulson BS. Rotavirus spike protein VP5* binds α2β1 integrin on the cell surface and competes with virus for cell binding and infectivity. J Gen Virol. 2006;87:1275-83.
17. Guerrero CA, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R, et al. Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol. 2002;76:4096-102.
18. Guerrero CA, Zárate S, Corkidi SG, López S, Arias CF. Biochemical characterization of rotavirus receptors in MA104 cells. J Virol. 2000;74:9362-71.
19. Zárate S, Cuadras MA, Espinosa R, Romero P, Juárez KO, Camacho-Nuez M, et al. Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol. 2003;77:7254-60.
20. Pérez-Vargas J, Romero P, López S, Arias CF. Peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol. 2006;80:3322-31.
21. Gualtero DF, Guzmán F, Acosta O, Guerrero CA. Amino acid domains 280-297 of VP6 and 531-554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol. 2007;152:2183-96.
22. López S, Arias CF. Multistep entry of rotavirus into cells: A Versaillesque dance. Trends Microbiol. 2004;12:271-8.
23. López S, Arias CF. Early steps in rotavirus cell entry. Curr Top Microbiol Immunol. 2006;309:39-66.
24. Trask SD, Dormitzer PR. Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol. 2006;80:11293-304.
25. Mamathambika BS, Bardwell JC. Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol. 2008;24:211-35.
26. Turano C, Coppari S, Altieri F, Ferraro A. Proteins of the PDI family: Unpredicted non-ER locations and functions. J Cell Physiol. 2002;193:154-63.
27. Appenzeller-Herzog C, Ellgaard L. The human PDI family: Versatile packed into a single fold. Biochim Biophys Acta. 2008;1783:535-48.
28. Ellgaard L, Ruddock LW. The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Rep. 2005;6:28-32.
29. Ferrari D, Soling HD. The protein disulphide-isomerase family: Unravelling a string of folds. Biochem J. 1999; 339:1-10.
30. Hawkins HC, Blackburn EC, Freedman RB. Comparison of the activities of protein disulphide-isomerase and thioredoxin in catalyzing disulphide isomerization in a protein substrate. Biochem J. 1991;275:349-53.
31. Jordan PA, Gibbins JM. Extracellular disulfide exchange and the regulation of cell function. Antioxid Redox Signal. 2006;8:312-24.
32. Gallina A, Mandel R, Trahey M, Broder CC, Ryser HJ. Inhibitors of protein disulfide isomerase prevent cleavage of disulfide bonds in receptor bound glycoprotein 120 and prevent HIV-1 entry. J Biol Chem. 2002;277:50579-88.
33. Tager M, Kroning H, Thiel U, Ansorge S. Membrane-bound protein disulfide isomerase PDI is involved in regulation of surface expression of thiols and drug sensitivity of B-CLL cells. Exp Hematol.1997;25:601-7.
34. Essex DW. Redox control of platelet function. Antioxid Redox Signal. 2009;11:1191-225.
35. Lahav J. A new regulatory disulfide isomerase on the platelet surface. Blood. 2005;105:1378-9.
36. Jordan PA, Stevens JM, Hubbard GP, Barrett NE, Sage T, Authi KS, et al. A role for the thiol isomerase protein ERP5 in platelet function. Blood. 2005;105:1500-7.
37. Mandel R, Ryser HJ, Ghani F, Wu M, Peak D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci USA. 1993;90:4112-6.
38. O'Neill S, Robinson A, Deering A, Ryan M, Fitzgerald DJ, Moran N. The platelet integrin αIIbβ3 has an endogenous thiol isomerase activity. J Biol Chem. 2000;275:36984-90.
39. Swiatkowska M, Szymanski J, Padula G Cierniewski CS. Interaction and functional association of protein disulfide isomerase with αVβ3 integrin on endothelial cells. FEBS J. 2008;275:1813-23.
40. Abell BA, Brown DT. Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface. J Virol. 1993;67:5496-501.
41. Ryser HJ, Levy EM, Mandel R, DiSciullo GJ. Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc Nat Acad Sci USA. 1994;91:4559-63.
42. Markovic I, Stantchev TS, Fields KH, Tiffany LJ, Tomiç M, Weiss CD, et al. Thiol/disulfide exchange is a prerequisite for CXCR4-tropic HIV-1 envelope-mediated T-cell fusion during viral entry. Blood. 2004;103:1586-94.
43. Ryser HJ, Flückiger R. Progress in targeting HIV-1 entry. Drug Discov Today. 2005;10:1085-94.
44. Auwerx J, Isacsson O, Söderlund J, Balzarini J, Johansson M, Lundberg M. Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replication. Int J Biochem Cell Biol. 2009;41:1269-75.
45. Ou W, Silver J. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion. Virology. 2006;350:406-17.
46. Jain S, McGinnes LW, Morrison TG. Thiol/disulfide exchange is required for membrane fusion directed. J Virol. 2007;81:2328-39.
47. Jain S, McGinnes LW, Morrison TG. Overexpression of thiol/disulfide isomerases enhances membrane fusion directed by the Newcastle disease virus fusion protein. J Virol. 2008;82:12039-48.
48. Jain S, McGinnes LW, Morrison TG. Role of thiol/disulfide exchange in Newcastle disease virus entry. J Virol. 2009;83:241-9.
49. Abou-Jaoude G, Sureau C. Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol. 2007;81:13057-66.
50. Guerrero CA, Santana AY, Acosta O. Mouse intestinal villi as a model system for studies of rotavirus infection. J Virol Methods. 2010;168:22-30.
51. Lizano M, López S, Arias CF. The amino-terminal half of rotavirus SA114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. J Virol. 1991;65:1383-91.
52. Patton JT, Hua J, Mansell EA. Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4. J Virol. 1993;67:4848-55.
53. Mathieu M, Petitpas I, Navaza J, Lepault J, Kohli E, Pothier P, et al. Atomic structure of the major capsid protein of rotavirus: Implications for the architecture of the virion. EMBO J. 1993;20:1485-97.
54. Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science. 2009;324:1444-7.
55. Dormitzer PR, Nason EB, Prasad BV, Harrison SC. Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature. 2004;430:1053-8.
56. Yoder JD, Trask SD, Vo TP, Binka M, Feng N, Harrison SC, et al. VP5* rearranges when rotavirus uncoats. J Virol. 2009;83:11372-7.
57. Dormitzer PR, Sun ZY, Wagner G, Harrison SC. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 2002;21:885-97.
58. Trauger S, Junker T, Siuzdak G. Investigating viral proteins and intact viruses with mass spectrometry. Top Curr Chem. 2003;225:265-82.
Cómo citar
1.
Calderón MN, Guerrero C, Domínguez Y, Garzón E, Barreto SM, Acosta O. Interacción de rotavirus con la proteína disulfuro-isomerasa in vitro y en sistemas celulares. biomedica [Internet]. 1 [citado 29 de noviembre de 2020];31(1):70-1. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/337
Sección
Artículos originales