Polimorfismos de los genes JAG1, MEF2C y BDNF asociados con la densidad mineral ósea en mujeres del norte de México

Sandra Marlen González-Peña, Eduardo Campos-Góngora, Hilda Guadalupe Ávila-Rodríguez, Erik Ramírez-López, Rafael Velázquez-Cruz, Zacarías Jiménez-Salas, .

Palabras clave: densidad mineral ósea, osteoporosis, polimorfismo genético, mujeres, México

Resumen

Introducción. La osteoporosis se caracteriza por una baja densidad mineral ósea; la composición genética es uno de los factores que más influyen en ella, pero hay pocos estudios de genes asociados con esta condición en la población mexicana.
Objetivo. Investigar la posible asociación de ocho polimorfismos de un solo nucleótido (Single Nucleotide Polymorphism, SNP) de los genes JAG1, MEF2C y BDNF con la densidad mineral ósea en mujeres del norte de México.
Materiales y métodos. Participaron 124 mujeres de 40 a 80 años, sin parentesco entre ellas. Su densidad mineral ósea se determinó mediante absorciometría dual de rayos X y la genotipificación se hizo utilizando discriminación alélica mediante PCR en tiempo real; se estudiaron cuatro de los SNP del gen JAG1 (rs6514116, rs2273061, rs2235811 y rs6040061), tres del MEF2C (rs1366594, rs12521522 y rs11951031) y uno del BDNF (rs6265). El análisis estadístico de los datos obtenidos se hizo por regresión lineal.
Resultados. El SNP rs2235811 presentó asociación significativa con la densidad mineral ósea de todo el cuerpo bajo el modelo de herencia dominante (p=0,024) y, aunque los otros SNP no tuvieron relación significativa con esta densidad, en ninguno de los modelos de herencia estudiados, se observó una tendencia hacia esta asociación.
Conclusión. Los resultados sugieren que el SNP rs2235811 del gen JAG1 podría contribuir a la variación en la densidad mineral ósea de las mujeres del norte de México.

Descargas

La descarga de datos todavía no está disponible.
  • Sandra Marlen González-Peña Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
  • Eduardo Campos-Góngora Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
  • Hilda Guadalupe Ávila-Rodríguez Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
  • Erik Ramírez-López Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
  • Rafael Velázquez-Cruz Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Ciudad de México, México
  • Zacarías Jiménez-Salas Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México http://orcid.org/0000-0002-1544-0899

Referencias bibliográficas

World Health Organization. Prevention and management of osteoporosis: Report of a WHO scientific group. Singapur: WHO; 2003. p. 921.

Muñoz-Torres M, Varsavsky M, Avilés-Pérez MD. Osteoporosis. Definición epidemiología. Rev Osteoporos Metab Miner. 2010;2(Supl.3):S5-7.

Clark P, Carlos F, Vázquez-Martínez LJ. Epidemiology, costs and burden of osteoporosis in México. Arch Osteoporos. 2010;5:9-17.

Özbaş H, Tutgun-Onrat S, Özdamar K. Genetic and environmental factors in human osteoporosis. Mol Biol Rep. 2012;39:11289-96. https://doi.org/10.1007/s11033-012-2038-5

Ng MYM, Sham PC, Paterson AD, Chan V, Kung AW. Effect of environmental factors and gender on the heritability of bone mineral density and bone size. Ann Hum Genet. 2006;70: 428-38. https://doi.org/10.1111/j.1469-1809.2005.00242.x

Estrada K, Styrkarsdottir U, Evangelos E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44:491-501. https://doi.org/10.1038/ng.2249

Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, et al. Twenty bone mineral density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41:1199-206. https://doi.org/10.1038/ng.446

Styrkarsdottir U, Halldorsson BV, Gudbjartsson DF, Tang NL, Koh JM, Xiao S, et al. European bone mineral density loci are also associated with BMD in East-Asian population. PLoS One. 2010;5:e13217. https://doi.org/10.1371/journal.pone.0013217

Lisker R, López MA, Jasqui S, Ponce de León Rosales, S, Correa-Rotter R, Sánchez S, et al. Association of vitamin D receptor polymorphisms with osteoporosis in Mexican postmenopausal women. Hum Biol. 2003;75:399-403. https://doi.org/10.1353/hub.2003.0045

González-Mercado A, Sánchez-López JY, Regla-Nava JA, Gámez-Nava JI, González-López L, Durán-González J, et al. Association analysis of vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Mexican-Mestizo women. Genet Mol Res. 2013;12:2755-63. https://doi.org/10.4238/2013.July.30.13

Castelán-Martínez OD, Vivanco-Muñoz N, Falcón-Ramírez E, Valdés-Flores M, Clark P. Apa1 VDR polymorphism and osteoporosis risk in postmenopausal Mexican women. Gac Med Mex. 2015;151:472-6.

Jiménez-Salas Z, Hernández-Tobías EA, Ramírez-López TE, Campos-Góngora E. Association of polymorphism TaqI of vitamin D receptor with bone mineral density in young Mexican women. Nutr Hosp. 2012;27:1505-10. https://doi.org/10.3305/nh.2012.27.5.5673

Gómez R, Magaña JJ, Cisneros B, Pérez-Salazar E, Faugeron S, Véliz D, et al. Association of the estrogen receptor alpha gene polymorphisms with osteoporosis in the Mexican population. Clin Genet. 2007;72:574-81. https://doi.org/10.1111/j.1399-0004.2007.00898.x

Falcón-Ramírez E, Casas-Ávila L, Miranda A, Díez P, Castro C, Rubio J, et al. Sp1 polymorphism in collagen I α1 gene is associated with osteoporosis in lumbar spine of Mexican women. Mol Biol Rep. 2011;38:2987-92. https://doi.org/10.1007/s11033-010-9963-y

Magaña JJ, Gómez R, Cisneros B, Casas L, Valdés-Flores M. Association of interleukin-6 gene polymorphisms with bone mineral density in Mexican women. Arch Med Res. 2008;39:618-24. https://doi.org/10.1016/j.arcmed.2008.05.006

Magaña JJ, Gómez R, Cisneros B, Casas L, Castorena F, Miranda A, et al. Association of the CT gene (CA) polymorphism with BMD in osteoporotic Mexican women. Clin Genet. 2006;70:402-8. https://doi.org/10.1111/j.1399-0004.2006.00703.x

Falcón-Ramírez E, Casas-Ávila L, Cerda-Flores RM, Castro-Hernández C, Rubio-Lightbourn J, Velázquez-Cruz R, et al. Association of LRP5 haplotypes with osteoporosis in Mexican women. Mol Biol Rep. 2013;40:2705-10. https://doi.org/10.1007/s11033-012-2357-6

Villalobos-Comparán M, Jiménez-Ortega RF, Estrada K, Parra-Torres AY, González-Mercado A, Patiño N, et al. A pilot genome-wide association study in postmenopausal Mexican-Mestizo women implicates the RMND1/CCDC170 locus is associated with bone mineral density. Int J Genomics. 2017;2017:5831020. https://doi.org/10.1155/2017/5831020

Kramer I, Baertschi S, Halleux C, Keller H, Kneissel M. Mef2c deletion in osteocytes results in increased bone mass. J Bone Miner Res. 2012;27:360-73. https://doi.org/10.1002/jbmr.1492

Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492:1-18. https://doi.org/10.1016/j.gene.2011.10.044

Gifre L, Ruiz-Gaspá S, Monegal A, Nomdedeu B, Filella X, Guañabens N, et al. Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone. 2013;57:272-6. https://doi.org/10.1016/j.bone.2013.08.016

Johnson ME, Deliard S, Zhu F, Xia Q, Wells AD, Hankenson KD, et al. A ChIP-seq-defined genome-wide map of MEF2C binding reveals inflammatory pathways associated with its role in bone density determination. Calcif Tissue Int. 2014;94:396-402. https://doi.org/10.1007/s00223-013-9824-5

Park SE, Oh KW, Lee WY, Baek KH, Yoon KH, Son HY, et al. Association of osteoporosis susceptibility genes with bone mineral density and bone metabolism related markers in Koreans: The Chungju Metabolic Disease Cohort (CMC) study. Endocr J. 2014;61:1069-78. https://doi.org/10.1507/endocrj.EJ14-0119

Zhu F, Sweetwyne MT, Hankenson KD. PKCδ is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells. 2013;31:1181-92.

https://doi.org/10.1002/stem.1353

Kung AW, Xiao SM, Cherny S, Li GH, Gao Y, Tso G, et al. Association of JAG1 with bone mineral density and osteoporotic fractures: A genome-wide association study and follow-up replication studies. Am J Hum Genet. 2010;86:229-39. https://doi.org/10.1016/j.ahg.2009.12.014

Rojano-Mejía D, Coral-Vázquez RM, Cortés-Espinosa L, López-Medina G, Aguirre-García MC, Coronel A, et al. JAG1 and COL1A1 polymorphisms and haplotypes in relation to bone mineral density variations in postmenopausal Mexican-Mestizo women. Age (Dordr). 2013;35:471-8. https://doi.org/10.1007/s11357-011-9363-9

Velázquez-Cruz R, Jiménez-Ortega RF, Parra-Torres A, Castillejos-López M, Patiño N, Quiterio M, et al. Analysis of association of MEF2C, SOST and JAG1 genes with bone mineral density in Mexican-Mestizo postmenopausal women. BMC Musculoskelet Disord. 2014;15:400. https://doi.org/10.1186/1471-2474-15-400

McDowell KA, Hutchinson AN, Wong-Goodrich SJ, Presby MM, Su D, Rodríguez RM, et al. Reduced cortical BDNF expression and aberrant memory in Carf knock-out mice. J Neurosci. 2010;30:7453-65. https://doi.org/10.1523/JNEUROSCI.3997-09.2010

Nakanishi T, Takahashi K, Aoki C, Nishikawa K, Hattori T, Taniguchi S. Expression of nerve growth factor family neurotrophins in a mouse osteoblastic cell line. Biochem Biophys Res Commun. 1994;198:891-7. https://doi.org/10.1006/bbrc.1994.1127

Deng FY, Tan LJ, Shen H, Liu YJ, Liu YZ, Li J, et al. SNP rs6265 regulates protein phosphorylation and osteoblast differentiation and influences BMD in humans. J Bone Miner Res.2013;28:2498-507. https://doi.org/10.1002/jbmr.1997

Guo Y, Dong SS, Chen XF, Jing YA, Yang M, Yan H, et al. Integrating epigenomic elements and GWASs identifies BDNF gene affecting bone mineral density and osteoporotic fracture risk. Sci Rep. 2016;6:30558. https://doi.org/10.1038/srep30558

Price AL, Butler J, Patterson N, Capelli C, Pascali VL, Scarnicci F, et al. Discerning the ancestry of European Americans in genetic association studies. PLoS Genet. 2008;4:e236. https://doi.org/10.1371/journal.pgen.0030236

Silva-Zolezzi I, Hidalgo-Miranda A, Estrada-Gil J, Fernández-López JC, Uribe-Figueroa L, Contreras A, et al. Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in México. Proc Natl Acad Sci USA. 2009;106:8611-6. https://doi.org/10.1073/pnas.0903045106

Moreno-Estrada A, Gignoux CR, Fernández-López JC, Zakharia F, Sikora M, Contreras AV, et al. Human genetics. The genetics of México recapitulates Native American substructure and affects biomedical traits. Science. 2014;344:1280-5. https://doi.org/10.1126/science.1251688

Delezé M, Cons-Molina F, Villa AR, Morales-Torres J, González-González JG, Calva JJ, et al. Geographic differences in bone mineral density of Mexican women. Osteoporos Int. 2000;11:562-9.

Deng HW, Shen H, Xu FH, Deng HY, Conway T, Zhang HT, et al. Test of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res. 2002;17:678-86. https://doi.org/10.1359/jbmr.2002.17.4.678

Secretaría de Salud. Reglamento de la Ley General de Salud en Materia de Investigación para la Salud. Fecha de consulta: 21 de marzo de 2016. Disponible en: http://www.salud.gob.mx/unidades/cdi/nom/compi/rlgsmis.html

Court MH. A simple calculator to determine whether observed genotype frequencies are consistent with Hardy-Weinberg equilibrium. (2005-2008). Comparative and Molecular Pharmacogenomics Laboratory, Tufts University. Fecha de consulta: 12 de marzo de 2016.Disponible en: http://fletcher.tufts.edu/~/media/Fletcher/Microsites/congratulations/AY2016-2017%20Certification%20of%20Souces%20of%20Funds%20Form.pdf

Iniesta R, Guinó E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac Sanit. 2005;19:333-41.

Ensembl.org. Human (GRCh38.p10). Fecha de consulta: 12 de marzo de 2016. Disponible en: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=5:89079744-89080744;v=rs1366594;vdb=variation;vf=926764#population_freq_AMR

Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, et al. Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem. 2008;283:16259-67. https://doi.org/10.1074/jbc.M800668200

Contreras-Cubas C, Sánchez-Hernández BE, García-Ortiz H, Martínez-Hernández A, Barajas-Olmos F, Cid M, et al. Heterogenous distribution of MTHFR gene variants among Mestizos and diverse Amerindian groups from Mexico. PLoS One. 2016;11:e0163248. https://doi.org/10.1371/journal.pone.0163248

Cómo citar
1.
González-Peña SM, Campos-Góngora E, Ávila-Rodríguez HG, Ramírez-López E, Velázquez-Cruz R, Jiménez-Salas Z. Polimorfismos de los genes JAG1, MEF2C y BDNF asociados con la densidad mineral ósea en mujeres del norte de México. biomedica [Internet]. 1 de septiembre de 2018 [citado 3 de diciembre de 2020];38(3):320-8. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/4014
Publicado
2018-09-01
Sección
Artículos originales