Patrón de los motivos EPIYA de cepas cubanas de Helicobacter pylori positivas para CagA

Lino E. Torres, Lidice González, Karelia Melián, Jordis Alonso, Arlenis Moreno, Mayrín Hernández, Orlando Reyes, Ludisleydis Bermúdez, Javier Campos, Guillermo Pérez-Pérez, Boris L. Rodríguez, .

Palabras clave: Helicobacter pylori, neoplasias gástricas, factores de virulencia, Cuba

Resumen

Introducción. Se sabe que el polimorfismo en la región C-terminal de la citotoxina asociada al gen A (CagA) influye en el desarrollo de la enfermedad gástrica durante la infección por Helicobacter pylori.
Objetivo. Determinar el número y el tipo de patrones de fosforilación de CagA (patrón EPIYA) en aislamientos cubanos de H. pylori, y estudiar su asociación con las enfermedades gástricas.
Materiales y métodos. Se empleó el ADN de 95 cepas de H. pylori positivas para CagA, para amplificar la región 3’ variable del gen cagA por PCR, mediante el empleo de diferentes estrategias. Además, se diseñaron nuevos cebadores para clasificar por PCR los aislamientos según el tipo de CagA, occidental o del este asiático. Los productos de PCR obtenidos de 14 aislamientos representativos se purificaron y secuenciaron para confirmar los resultados de la PCR.
Resultados. La distribución de los patrones EPIYA encontrada, fue: 2 AB (2,1 %), 1 AC (1,1 %), 1 BC (1,1 %), 70 ABC (73,6 %), 19 ABCC (20 %), y 2 ABCCC (2,1 %). El análisis de la secuenciación confirmó las clasificaciones hechas por PCR en las 14 cepas estudiadas y demostró tres cepas con secuencias únicas de nucleótídos, no reportadas anteriormente. La distribución del patrón EPIYA-ABC fue equivalente en todas las enfermedades encontradas: 78,9 % en úlcera gástrica, 72,5 % en úlcera duodenal y 72,2 % en dispepsia no ulcerada.
Conclusión. La mayoría de los aislamientos cubanos presentaron las combinaciones de motivos EPIYA menos virulentas (ABC). Los resultados del empleo de los nuevos cebadores y el análisis de la secuenciación, confirmaron que todas las cepas estudiadas portaban el gen cagA de tipo occidental.
Ninguno de los patrones específicos de EPIYA se asoció con úlcera péptica. Este es el primer reporte que muestra la distribución de los motivos EPIYA en los aislamientos de H. pylori de la región del Caribe.

 

DOI: http://dx.doi.org/10.7705/biomedica.v32i1.453

Descargas

La descarga de datos todavía no está disponible.
  • Lino E. Torres Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Lidice González Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Karelia Melián Department of Gastroenterology, Medical and Surgery Research Centre (CIMEQ), Ciudad de La Habana, Cuba
  • Jordis Alonso Department of Gastroenterology, Medical and Surgery Research Centre (CIMEQ), Ciudad de La Habana, Cuba
  • Arlenis Moreno Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Mayrín Hernández Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Orlando Reyes Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Ludisleydis Bermúdez Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Javier Campos Department of Molecular Biology, Biotechnology Division, National Centre for Scientific Research, Ciudad de La Habana, Cuba
  • Guillermo Pérez-Pérez Departments of Medicine and Microbiology, New York University, School of Medicine, USA
  • Boris L. Rodríguez Department of Research and Development, Division of Production and Development of Equipments and Diagnostics, National Centre for Scientific Research, Ciudad de La Habana, Cuba

Referencias

Hatakeyama M, Higashi H. Helicobacter pylori CagA: A new paradigm for bacterial carcinogenesis. Cancer Sci. 2005;96:835-43.

Wu AH, Crabtree JE, Bernstein L, Hawtin P, Cockburn M, Tseng CC, et al. Role of Helicobacter pylori CagA+ strains and risk of adenocarcinoma of the stomach and esophagus. Int J Cancer. 2003;103:815-21.

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.

Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 2008;10:1573-81.

Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G, et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA. 1993;90:5791-5.

Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol. 2002;43:971-80.

Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA. 2002;99:14428-33.

Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: Involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA. 1999;96:14559-64.

Smith M, Hold L, Tahara E, El-Omar E. Cellular and molecular aspects of gastric cancer. World J Gastroenterol. 2006;21:2979-90.

Kurashima Y, Murata-Kamiya N, Kikuchi K, Higashi H, Azuma T, Kondo S, et al. Deregulation of beta-catenin signal by Helicobacter pylori CagA requires the CagAmultimerization sequence. Int J Cancer. 2008;122:823-31.

Yokoyama K, Higashi H, Ishikawa S, Fujii Y, Kondo S, Kato H, et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci USA. 2005;102:9661-6.

Brandt S, Kwok T, Hartig R, Konig W, Backert S. NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci USA. 2005;102:9300-5.

Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the b-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26:4617-26.

Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295:683-6.

Yamaoka Y, Kodama T, Kashima K, Graham DY, Sepulveda AR. Variants of the 3’ region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol. 1998;36:2258-63.

Azuma T, Yamakawa A, Yamazaki S, Fukuta K, Ohtani M, Ito Y, et al. Correlation between variation of the 3’ region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J Infect Dis. 2002;186:1621-30.

Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004;127:514-23.

Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology. 2008;135:91-9.

Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;22:1003-8.

Miura M, Ohnishi N, Tanaka S, Yanagiya K, Hatakeyama M. Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice. Int J Cancer. 2009;125:2497-504.

Phillips AA, Jacobson JS, Magai C, Consedine N, Horowicz-Mehler NC, Neugut AI. Cancer incidence and mortality in the Caribbean. Cancer Invest. 2007;25:476-83.

Torres LE, Melian K, Moreno A, Alonso J, Sabatier CA, Hernández M, et al. Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J Gastroenterol. 2009;15:204-10.

Xu C, Li ZS, Tu ZX, Xu GM, Gong YF, Man XH. Distribution of cagG gene in Helicobacter pylori isolates from Chinese patients with different gastroduodenal diseases and its clinical and pathological significance. World J Gastroenterol. 2003;9:2258-60.

Rudi J, Kolb C, Maiwald M, Kuck D, Sieg A, Galle PR, et al. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol. 1998;36:944-8.

Argent RH, Zhang Y, Atherton JC. Simple method for determination of the number of Helicobacter pylori CagA variable-region EPIYA tyrosine phosphorylation motifs by PCR. J Clin Microbiol. 2005;43:791-5.

Valmaseda T, Gisbert JP, Paniagua M, Pajares JM. Helicobacter pylori CagA antibodies in various gastroduodenal diseases from 2 different populations. Med Clin (Barc). 2002;118:90-3.

Panayotopoulou EG, Sgouras DN, Papadakos K, Kalliaropoulos A, Papatheodoridis G, Mentis AF, et al. Strategy to characterize the number and type of repeating EPIYA phosphorylation motifs in the carboxyl terminus of CagA protein in Helicobacter pylori clinical isolates. J Clin Microbiol. 2007;45:488-95.

Devi SM, Ahmed I, Khan AA, Rahman SA, Alvi A, Sechi LA, et al. Genomes of Helicobacter pylori from native Peruvians suggest admixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genomics. 2006;7:191.

Argent RH, Hale JL, El Oma EM, Atherton JC. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between Western and East Asian strains, and influences on interleukin-8 secretion. J Med Microbiol.2008;5:1062-7.

Occhialini A, Marais A, Urdaci M, Sierra R, Muñoz N, Covacci A, et al. Composition and gene expression of the cag pathogenicity island in Helicobacter pylori strains isolated from gastric carcinoma and gastritis patients in Costa Rica. Infect Immun. 2001;69:1902-8.

Reyes-León A, Atherton JC, Argent RH, Puente JL, Torres J. Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun. 2007;75:3445-54.

.Yamaoka Y, El-Zimaity H, Gutiérrez O, Figura N, Kim J, Kodama T, et al. Relationship between the cagA 3’ repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology. 1999;117:342-9.

Schneider N, Krishna U, Romero-Gallo J, Israel DA, Piazuelo MB, Camargo MC, et al. Role of Helicobacter pylori

CagA molecular variations in induction of host pPhenotypes with carcinogenic potential. J Infect Dis. 2009;199:1218-21.

Sicinschi LA, Correa P, Peek RM, Camargo MC, Piazuelo MB, Romero-Gallo J, et al. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions. Clin Microbiol Infect. 2010;16:369-78.

An B, Lee G, Lim K, Moon BS, Kim JB. Identification of the repeated number of C and D regions of tyrosine phosphorylation motifs in Helicobacter pylori cagA using multiplex PCR. Microbiol Immunol. 2008;5:479-83.

Schmidt H, Andres S, Kaakoush N, Engstrand L, Eriksson L, Goh K, et al. The prevalence of the duodenal ulcer promoting gene (dupA) in Helicobacter pylori isolates varies by ethnic group and is not universally associated with disease development: A case-control study. Gut Pathog. 2009;1:5.

Yamaoka Y. Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis. J Med Microbiol. 2008;57:545-53.

Azuma T, Yamakawa A, Yamazaki S, Ohtani M, Ito Y, Muramatsu A, et al. Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J Clin Microbiol. 2004;42:2508-17.

Vilaichone RK, Mahachai V, Tumwasorn S, Wu JY, Graham DY, Yamaoka Y. Molecular epidemiology and outcome of Helicobacter pylori infection in Thailand: A cultural cross roads. Helicobacter. 2004;9:453-9.

Zhu YL, Zheng S, Du Q, Qian KD, Fang PC. Characterization of CagA variable region of Helicobacter pylori isolates from Chinese patients. World J Gastroenterol. 2005;11:880-4.

Choi KD, Kim N, Lee DH, Kim JM, Kim JS, Jung HC, et al. Analysis of the 3´ variable region of the cagA gene of Helicobacter pylori isolated in Koreans. Dig Dis Sci. 2007;52:960-6.

Bosetti C , Malvezzi M, Chatenoud L, Negri E, Levi F, La Vecchia C. Trends in cancer mortality in the Americas, 1970-2000. Ann Oncol. 2005;16:489-511.

Cómo citar
Torres, L. E., González, L., Melián, K., Alonso, J., Moreno, A., Hernández, M., Reyes, O., Bermúdez, L., Campos, J., Pérez-Pérez, G., & Rodríguez, B. L. (2012). Patrón de los motivos EPIYA de cepas cubanas de Helicobacter pylori positivas para CagA. Biomédica, 32(1), 23-31. https://doi.org/10.7705/biomedica.v32i1.453

Más sobre este tema

Publicado
2012-03-01
Sección
Artículos originales