Molecular characterization of non-vaccine Streptococcus pneumoniae serotypes 11A, 15 B/C and 23A recovered from invasive isolates in Colombia

Paola Andrea Palacios, Carolina Duarte, Olga Sanabria, Jaime Moreno, .

Keywords: Vaccines, conjugate, pneumonia, meningitis, pneumococcal infections, multilocus sequence typing, electrophoresis, gel, pulsed-field

Abstract

Introduction: A total of 192 invasive Streptococcus pneumoniae isolates, from serotypes 11A, 15B/C and 23A (not included in the conjugated vaccines), were collected in Colombia between 1994 and 2014 as part of the activities of the Network surveillance system for the causative agents of pneumonia and meningitis (SIREVA II).
Objective: To determine the molecular characteristics of invasive S. pneumoniae isolates from serotypes 11A, 15B/C and 23A in Colombia from 1994 to 2014.
Materials and methods: The molecular characterization of the isolates was carried out through Pulse-Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST).
Results: Serotype 11A showed one clonal group represented by ST62. Serotype 15B/C was composed of three groups associated with Netherlands15B-37 ST199 (28.75%), ST8495 (18.75%), and SLV (Single-Locus Variant) of ST193 (21.25%). Isolates from serotype 23A were gathered in three clonal groups, with 70.21% closely related to ST42, 17.02% to Colombia23F-ST338, and 6.38% to Netherlands15B-37 ST199.
Conclusion: Clones Colombia23F-ST338 and Netherlands15B-ST199 covered more serotypes than those previously found by other authors, including serotype 23A. These analyses reveal the importance of capsular switching in the spreading of successful clones among non-vaccine serotypes causing invasive pneumococcal disease.

Downloads

Download data is not yet available.
  • Paola Andrea Palacios Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Carolina Duarte Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Olga Sanabria Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Jaime Moreno Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia

References

Rosen JB, Thomas AR, Lexau CA, Reingold A, Hadler JL, Harrison LH, et al. Geographic variation in invasive pneumococcal disease following pneumococcal conjugate vaccine introduction in the United States. Clin Infect Dis. 2011;53:137-43. https://doi.org/10.1093/cid/cir326

Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: Implications for conjugate vaccine formulation and use, part 1. Clin Infect Dis. 2000;30:100-21. https://doi.org/10.1086/313608

Park IH, Geno KA, Yu J, Oliver MB, Kim K-H, Nahm MH. Genetic, biochemical, and serological characterization of a new pneumococcal serotype, 6H, and generation of a pneumococcal strain producing three different capsular repeat units. Clin Vaccine Immunol. 2015;22:313-8. https://doi.org/10.1128/CVI. 00647-14

Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype and clone specific differences in invasive disease potential. J Infect Dis. 2003;187:1424-32. https://doi.org/10.1086/374624

Parra EL, Ramos V, Sanabria O, Moreno J. Serotype and genotype distribution among invasive Streptococcus pneumoniae isolates in Colombia, 2005-2010. PLoS One. 2014;9:e84993. https://doi.org/10.1371/journal.pone.0084993

Muñoz-Almagro C, Jordan I, Gene A, Latorre C, García-García JJ, Pallares R. Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin Infect Dis. 2008;46:174-82. https://doi.org/10.1086/524660

Muller-Graf CD, Whatmore AM, King SJ, Trzcinski K, Pickerill AP, Doherty N, et al. Population biology of Streptococcus pneumoniae isolated from oropharyngeal carriage and invasive disease. Microbiology. 1999;145:3283-93. https://doi.org/10.1099/00221287-145-11-3283

Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. A discussion of the evidence. Lancet. 2011;378:1962-73. https://doi.org/10.1016/S0140-6736(10)62225-8

Hanage WP. Serotype replacement in invasive pneumococcal disease: Where do we go from here? J Infect Dis. 2007;196:1282-4. https://doi.org/10.1086/521630

Beall BW, Gertz RE, Hulkower RL, Whitney CG, Moore MR, Brueggemann AB. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:1360-8. https://doi.org/10.1093/infdis/jir052

Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A, Liñares J, et al. Pneumococcal capsular switching: A historical perspective. J Infect Dis. 2012;207:439-49. https://doi.org/10.1093/infdis/jis703

Esposito S, Principi N. Impacts of the 13-valent pneumococcal conjugate vaccine in children. J Immunol Res. 2015;2015:591580. https://doi.org/10.1155/2015/591580

Ardanuy C, Marimón JM, Calatayud L, Giménez M, Alonso M, Grau I, et al. Epidemiology of invasive pneumococcal disease in older people in Spain (2007-2009): Implications for future vaccination strategies. PLoS One. 2012;7:e43619. https://doi.org/10.1371/journal.pone.0043619

Kaplan SL, Barson WJ, Lin PL, Romero JR, Bradley JS, Tan TQ, et al. Early trends for invasive pneumococcal infections in children after the introduction of the 13-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2013;32:203-7. https://doi.org/10.1097/INF.0b013e318275614b

Galanis I, Lindstrand A, Darenberg J, Browall S, Nannapaneni P, Sjöström K, et al. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur Respir J. 2016;47:1208-18. https://doi.org/10.1183/13993003.01451-2015

Moore CE, Paul J, Foster D, Mahar SA, Griffiths D, Knox K, et al. Reduction of invasive pneumococcal disease 3 years after the introduction of the 13-valent conjugate vaccine in the Oxfordshire Region of England. J Infect Dis. 2014;210:1001-11. https://doi.org/10.1093/infdis/jiu213

Thomas JC, Figueira M, Fennie KP, Laufer AS, Kong Y, Pichichero ME, et al. Streptococcus pneumoniae clonal complex 199: Genetic diversity and tissue-specific virulence. PLoS One. 2011;6:e18649. https://doi.org/10.1371/journal.pone.0018649

Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern GV. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob Agents Chemother. 2014;58:6484-9. https://doi.org/10.1128/AAC.03344-14

Mendes RE, Costello AJ, Jacobs MR, Biek D, Critchley IA, Jones RN. Serotype distribution and antimicrobial susceptibility of USA Streptococcus pneumoniae isolates collected prior to and post introduction of 13-valent pneumococcal conjugate vaccine. Diagn Microbiol Infect Dis. 2014;80:19-25. https://doi.org/10.1016/j.diagmicrobio.2014.05.020

Guevara M, Ezpeleta C, Gil-Setas A, Torroba L, Beristain X, Aguinaga A, et al. Reduced incidence of invasive pneumococcal disease after introduction of the 13-valent conjugate vaccine in Navarre, Spain, 2001-2013. Vaccine. 2014;32:2553-62. https://doi.org/10.1016/j.vaccine.2014.03.054

Harboe ZB, Dalby T, Weinberger DM, Benfield T, Mølbak K, Slotved HC, et al. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis. 2014;59:1066-73.https://doi.org/10.1093/cid/ciu524

Ben-Shimol S, Greenberg D, Givon-Lavi N, Schlesinger Y, Somekh E, Aviner S, et al. Early impact of sequential introduction of 7-valent and 13-valent pneumococcal conjugate vaccine on IPD in Israeli children<5 years: An active prospective nationwide surveillance. Vaccine. 2014;32:3452-9. https://doi.org/10.1016/j.vaccine. 2014.03.065

Di Fabio JL, Castañeda E, Agudelo CI, De la Hoz F, Hortal M, Camou T, et al. Evolution of Streptococcus pneumoniae serotypes and penicillin susceptibility in Latin America, Sireva-Vigía Group, 1993-1999. PAHO Sireva-Vigía Study Group. Pan American Health Organization. Pediatr Infect Dis J. 2001;20:959-67.

Clinical Laboratory Standards Institute. Disk diffusion. Supplemental tables. In: CLSI. M07–A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Ninth edition. Wayne, PA: CLSI; 2014.

Clinical Laboratory Standards Institute. MIC testing. Supplemental tables. In: CLSI. M02–A11. Performance standards for antimicrobial disk susceptibility tests. Eleventh edition. Wayne, PA: CLSI; 2014.

Vela MC, Fonseca N, Di Fabio JL, Castañeda E. Presence of international multiresistant clones of Streptococcus pneumoniae in Colombia. Microb Drug Resist. 2001;7:153-64. https://doi.org/10.1089/10766290152045020

Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: Identification of clones associated with serious invasive disease. Microbiology. 1998;144:3049-60. https://doi.org/10.1099/00221287-144-11-3049

Fletcher M, Laufer D, McIntosh E, Cimino C, Malinoski F. Controlling invasive pneumococcal disease: Is vaccination of at-risk groups sufficient? Int J Clin Pract. 2006;60:450-6. https://doi.org/10.1111/j.1368-5031.2006.00858.x

Grabenstein JD, Musey LK. Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults. Vaccine. 2014;32:2399-405.

https://doi.org/10.1016/j.vaccine.2014.02.096

Camilli R, Bonnal RJ, Del Grosso M, Iacono M, Corti G, Rizzi E, et al. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol. 2011;11:25. https://doi.org/10.1186/1471-2180-11-25

Aguinagalde L, Corsini B, Domenech A, Domenech M, Cámara J, Ardanuy C, et al. Emergence of amoxicillinresistant variants of Spain9V-ST156 pneumococci expressing serotype 11A correlates with their ability to evade the host immune response. PLoS One. 2015;10:e0137565. https://doi.org/10.1371/journal.pone.0137565

Tóthpál A, Kardos S, Laub K, Nagy K, Tirczka T, van der Linden M, et al. Radical serotype rearrangement of carried pneumococci in the first 3 years after intensive vaccination started in Hungary. Eur J Pediatr. 2015;174:373-81. https://doi.org/10.1007/s00431-014-2408-1

Parra EL, De La Hoz F, Díaz PL, Sanabria O, Realpe ME, Moreno J. Changes in Streptococcus pneumoniae serotype distribution in invasive disease and nasopharyngeal carriage after the heptavalent pneumococcal conjugate vaccine introduction in Bogotá, Colombia. Vaccine. 2013;31:4033-8. https://doi.org/10.1016/j.vaccine.2013.04.074

Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ, Lambertsen L, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: A population-based cohort study. PLoS Med. 2009;6:e1000081. https://doi.org/10.1371/journal.pmed.1000081

Temime L, Boelle PY, Opatowski L, Guillemot D. Impact of capsular switch on invasive pneumococcal disease incidence in a vaccinated population. PLoS One. 2008;3:e3244. https://doi.org/10.1371/journal.pone.0003244

Laufer AS, Thomas JC, Figueira M, Gent JF, Pelton SI, Pettigrew MM. Capacity of serotype 19A and 15B/C Streptococcus pneumoniae isolates for experimental otitis media: Implications for the conjugate vaccine. Vaccine. 2010;28:2450-7. https://doi.org/10.1016/j.vaccine.2009.12.078

Ho PL, Chiu SS, Law PY, Chan EL, Lai EL, Chow KH. Increase in the nasopharyngeal carriage of non-vaccine serogroup 15 Streptococcus pneumoniae after introduction of children pneumococcal conjugate vaccination in Hong Kong. Diagn Microbiol Infect Dis. 2015;81:145-8. https://doi.org/0.1016/j.diagmicrobio.2014.11.006

Dagan R, Givon-Lavi N, Leibovitz E, Greenberg D, Porat N. Introduction and proliferation of multidrug-resistant Streptococcus pneumoniae serotype 19A clones that cause acute otitis media in an unvaccinated population. J Infect Dis. 2009;199:776-85. https://doi.org/10.1086/597044

Gherardi G, Fallico L, Del Grosso M, Bonanni F, D’Ambrosio F, Manganelli R, et al. Antibiotic-resistant invasive pneumococcal clones in Italy. J Clin Microbiol. 2007;45:306-12. https://doi.org/10.1128/JCM.01229-06

Rantala M. Antimicrobial resistance in Streptococcus pneumoniae in Finland with special reference to macrolides and telithromycin. Date of entry: 30 de octubre, 2015. Available at: https://helda.helsinki.fi/bitstream/handle/10138/18982/antimicr.pdf;sequence=2

Tochevaa AS, Jefferiesa JMC, Christodoulidesa M, Fausta SN, Clarkea SC. Distribution of carried pneumococcal clones in UK children following the introduction of the 7-valent pneumococcal conjugate vaccine: A 3-year cross-sectional population based analysis. Vaccine. 2013;31:3187-90. https://doi.org/10.1016/j.vaccine.2013.04.075

Ramos V, Duarte C, Díaz A, Moreno J. Elementos genéticos móviles asociados con resistencia a eritromicina en aislamientos de Streptococcus pneumoniae en Colombia. Biomédica. 2014;34:209-16. https://doi.org/10.7705/biomedica.v34i0.1684

Sá-Leão R, Tomasz A, Sanches IS, Brito-Avô A, Vilhelmsson SE, Kristinsson KG, et al. Carriage of internationally spread clones of Streptococcus pneumoniae with unusual drug resistance patterns in children attending day care centers in Lisbon, Portugal. J Infect Dis. 2000;182:1153-60. https://doi.org/10.1086/315813

Gertz RE, McEllistrem DJ, Boxrud Z, Li V, Sakota TA, Thompson RR, et al. Clonal distribution of invasive pneumococcal isolates from children and selected adults in the United States prior to 7-valent conjugate vaccine introduction. J Clin Microbiol. 2003;41 4194-216. https://doi.org/10.1128/JCM.41.9.4194-4216.2003

How to Cite
1.
Palacios PA, Duarte C, Sanabria O, Moreno J. Molecular characterization of non-vaccine Streptococcus pneumoniae serotypes 11A, 15 B/C and 23A recovered from invasive isolates in Colombia. biomedica [Internet]. 2017 Sep. 1 [cited 2024 May 17];37(3):390-6. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3223

Some similar items:

Published
2017-09-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code