Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort

Jorge A. Vega, Simón Villegas-Ospina, Wbeimar Aguilar-Jiménez, María T. Rugeles, Gabriel Bedoya, Wildeman Zapata, .

Keywords: HIV-1, immunity, innate, phenotype, haplotypes, Colombia

Abstract

Introduction: Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied.
Objective: To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection.
Materials and methods: Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p’ value <0.05 after Bonferroni correction was considered significant.
Results: Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. The haplotypes C-C and T-T in CCL3 were associated with susceptibility (p’=0.016) and resistance (p’<0.0001) to HIV-1 infection, respectively. Finally, in multilocus analysis, the haplotype combinations formed by HHC in CCR5-CCR2, T-T in CCL3 and G-C in CCL5 were associated with resistance (p’=0.006).
Conclusion: Our results suggest that specific combinations of variants in genes from the same signaling pathway can define an HIV-1 resistant phenotype. Despite our small sample size, our statistically significant associations suggest strong effects; however, these results should be further validated in larger cohorts.

Downloads

Download data is not yet available.
  • Jorge A. Vega Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia Laboratorio de Genética, Dirección Regional Noroccidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Medellín, Colombia Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
  • Simón Villegas-Ospina Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia http://orcid.org/0000-0002-0957-2596
  • Wbeimar Aguilar-Jiménez Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
  • María T. Rugeles Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
  • Gabriel Bedoya Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
  • Wildeman Zapata Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia

References

Frade JM, Llorente M, Mellado M, Alcamí J, Gutiérrez-Ramos JC, Zaballos A, et al. The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection. J Clin Invest. 1997;100:497-502. http://dx.doi.org/10.1172/JCI119558

González E, Bamshad M, Sato N, Mummidi S, Dhanda R, Catano G, et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci USA. 1999;96:12004-9. http://dx.doi.org/10.1073/pnas.96.21.12004

González E, Dhanda R, Bamshad M, Mummidi S, Geevarghese R, Catano G, et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1 alpha: Impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci U S A. 2001;98:5199-204. http://dx.doi.org/10.1073/pnas.091056898

Ometto L, Zanchetta M, Mainardi M, De Salvo GL, García-Rodríguez MC, Gray L, et al. Co-receptor usage of HIV-1 primary isolates, viral burden, and CCR5 genotype in mother-to-child HIV-1 transmission. AIDS. 2000;14:1721-9.

Zapata W, Aguilar-Jiménez W, Pineda-Trujillo N, Rojas W, Estrada H, Rugeles MT. Influence of CCR5 and CCR2 genetic variants in the resistance/susceptibility to HIV in serodiscordant couples from Colombia. AIDS Res Hum Retroviruses. 2013;29:1594-603. http://dx.doi.org/10.1089/aid.2012.0299

Singh KK, Barroga CF, Hughes MD, Chen J, Raskino C, McKinney RE, et al. Genetic influence of CCR5, CCR2, and SDF1 variants on human immunodeficiency virus 1 (HIV-1)-related disease progression and neurological impairment, in children with symptomatic HIV-1 infection. J Infect Dis.2003;188:1461-72. http://dx.doi.org/10.1086/379038

Nguyen L, Li M, Chaowanachan T, Hu DJ, Vanichseni S, Mock PA, et al. CCR5 promoter human haplogroups associated with HIV-1 disease progression in Thai injection drug users. AIDS. 2004;18:1327-33. http://dx.doi.org/10.1097/01.aids.0000131303.39957.15

Li M, Song R, Masciotra S, Soriano V, Spira TJ, Lal RB, et al. Association of CCR5 human haplogroup E with rapid HIV type 1 disease progression. AIDS Res Hum Retroviruses. 2005;21:111-5. http://dx.doi.org/10.1089/aid.2005.21.111

Rugeles MT, Solano F, Díaz FJ, Bedoya VI, Patiño PJ. Molecular characterization of the CCR 5 gene in seronegative individuals exposed to human immunodeficiency virus (HIV). J Clin Virol. 2002;23:161-9. http://dx.doi.org/10.1016/S1386-6532(01)00219-0

Rousset F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour. 2008;8:103-6. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x

Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-7. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x

Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-2. http://dx.doi.org/10.1093/bioinformatics/btp187

Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet. 2005;14:1691-8. http://dx.doi.org/10.1093/hmg/ddi177

Bedoya G, Montoya P, García J, Soto I, Bourgeois S, Carvajal L, et al. Admixture dynamics in Hispanics: A shift in the nuclear genetic ancestry of a South American population isolate. Proc Natl Acad Sci USA. 2006;103:7234-9. http://dx.doi.org/10.1073/pnas.0508716103

Rojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, et al. Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol. 2010;143:13-20. http://dx.doi.org/10.1002/ajpa.21270

Jiang D, Mummidi S, Ahuja SK, Jarrett HW. CCR5 promoter haplotype transcription complex characterization. J Health Care Poor Underserved. 2011;22(Suppl.):73-90.

http://dx.doi.org/10.1353/hpu.2011.0169

Mummidi S, Bamshad M, Ahuja SS, González E, Feuillet PM, Begum K, et al. Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides. J Biol Chem. 2000;275:18946-61. http://dx.doi.org/10.1074/jbc.M000169200

Liu H, Nakayama EE, Theodorou I, Nagai Y, Likanonsakul S, Wasi C, et al. Polymorphisms in CCR5 chemokine receptor gene in Japan. Int J Immunogenet. 2007;34:325-35. http://dx.doi.org/10.1111/j.1744-313X.2007.00694.x

Tang J, Shelton B, Makhatadze NJ, Zhang Y, Schaen M, Louie LG, et al. Distribution of chemokine receptor CCR2 and CCR5 genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression. J Virol. 2002;76:662-72. http://dx.doi.org/10.1128/JVI.76.2.662-672.2002

Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci USA. 2003;100:8401-6. http://dx.doi.org/10.1073/pnas.1432450100

Gong Z, Tang J, Xiang T, Zhang L, Liao Q, Liu W, et al. Association between regulated upon activation, normal T cells expressed and secreted (RANTES) -28C/G polymorphism and susceptibility to HIV-1 infection: A metaanalysis. PLoS One. 2013;8:e60683. http://dx.doi.org/10.1371/journal.pone.0060683

He J, Li X, Tang J, Jin T, Liao Q, Hu G. Association between chemotactic chemokine ligand 5 -403G/A polymorphism and risk of human immunodeficiency virus-1 infection: A metaanalysis. Onco Targets Ther. 2015;8:727-34. http://dx.doi.org/10.2147/OTT.S78581

Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30:1095-106. http://dx.doi.org/10.1038/nbt.2422

How to Cite
1.
Vega JA, Villegas-Ospina S, Aguilar-Jiménez W, Rugeles MT, Bedoya G, Zapata W. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort. biomedica [Internet]. 2017 Jun. 1 [cited 2024 May 11];37(2):267-73. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3237

Some similar items:

Published
2017-06-01
Section
Short communication

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code