Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina

María Imaz, Sonia Allassia, Mónica Aranibar, Alba Gunia, Susana Poggi, Ana Togneri, Lidia Wolff, Group of Implementation of Fluorescence, .

Keywords: Tuberculosis, fluorescence, microscopy, diagnosis, sputum, acid-fast bacilli

Abstract

Introduction: Light-emitting diode fluorescence microscopy (LED-FM) has been endorsed by the World Health Organization (WHO) for tuberculosis diagnosis, but its accuracy in HIV-infected patients remains controversial, and only some few studies have explored procedural factors that may affect its performance.
Objective: To evaluate the performance of LED-FM for tuberculosis diagnosis in patients with and without HIV infection using a newer, less expensive LED lamp.
Materials and methods: We compared the performance of LED-FM and Ziehl-Neelsen (ZN) microscopy on respiratory specimen smears from tuberculosis (TB) suspects and patients on treatment examined by different technicians blinded for HIV-status and for the result of the comparative test. We analyzed the effect of concentrating specimens prior to microscopy using different examination schemes and user-appraisal of the LED device.
Results: Of the 6,968 diagnostic specimens collected, 869 (12.5%) had positive Mycobacterium tuberculosis cultures. LED-FM was 11.4% more sensitive than ZN (p<0.01). Among HIV-positive TB patients, sensitivity differences between LED-FM and ZN (20.6%) doubled the figure obtained in HIVnegative patients or in those with unknown HIV status (9.3%). After stratifying by direct and concentrated slides, the superiority of LED-FM remained. High specificity values were obtained both with LED-FM
(99.9%) and ZN (99.9%).The second reading of a sample of slides showed a significantly higher positive detection yield using 200x magnification (49.4 %) than 400x magnification (33.8%) (p<0.05). The LEDdevice had a very good acceptance among the technicians.
Conclusion: LED-FM better performance compared with ZN in HIV-infected patients and user-appraisal support the rapid roll-out of LED-FM. Screening at 200x magnification was essential to achieve LEDFM increased sensitivity.

Downloads

Download data is not yet available.
  • María Imaz Instituto Nacional de Enfermedades Respiratorias “Emilio Coni”, ANLIS “C.G. Malbrán”, Santa Fe, Argentina
    Laboratorio Nacional de Referencia de Tuberculosis
  • Sonia Allassia Dirección de Bioquímica de la Municipalidad de Rosario, Rosario, Argentina
    Laboratorio de Tuberculosis
  • Mónica Aranibar Hospital San Roque, San Salvador de Jujuy, Argentina
  • Alba Gunia Laboratorio Central de Salud Pública, Resistencia, Argentina
  • Susana Poggi Hospital “Dr. Francisco Javier Muñiz”, Ciudad Autónoma de Buenos Aires, Argentina
  • Ana Togneri Hospital Interzonal General de Agudos “Evita”, Lanús, Argentina
  • Lidia Wolff Hospital Rawson, Córdoba, Argentina
  • Group of Implementation of Fluorescence

References

World Health Organization. Fluorescent Light-Emitting Diode (LED) microscopy for diagnosis of tuberculosis: Policy statement. Accessed: February 4, 2016. Available from: http://apps.who.int/iris/bitstream/10665/44602/1/9789241501613_eng.pdf?ua=1&ua=1

Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic

review. Lancet Infect Dis. 2006;6:570-81.

Bennedsen J, Larsen SO. Examination for tubercle bacilli by fluorescence microscopy. Scand J Respir Dis. 1966;47:114-20.

Gordon C, van Deun A, Lumb R. Evaluating the performance of basic fuchsin for the Ziehl-Neelsen stain. Int J Tuberc Lung Dis. 2009;13:130-5.

van Deun A, Hossain M A, Gumusboga M, Rieder H L. Ziehl Neelsen staining: Theory and practice. Int J Tuberc Lung Dis. 2008;12:108-10.

Lumb R, van Deun A, Kelly P, Bastian I. Not all microscopes are equal. Int J Tuberc Lung Dis. 2006;10:227-9.

Kivihya-Ndugga LE, van Cleeff MR, Githui WA, Nganga LW, Kibuga DK, Odhiambo JA, et al. A comprehensive comparison of Ziehl-Neelsen and fluorescence microscopy for the diagnosis of tuberculosis in a resource-poor urban setting. Int J Tuberc Lung Dis. 2003;7:1163-71.

Prasanthi K, Kumari AR. Efficacy of fluorochrome stain in the diagnosis of pulmonary tuberculosis co-infected with HIV. Indian J Med Microbiol. 2005;23:179-81.

Albert H, Nakiyingi L, Sempa J, Mbabazi O, Mukkada S, Nyesiga B, et al. Operational implementation of LED fluorescence microscopy in screening tuberculosis suspects in an urban HIV clinic in Uganda. PLoS One. 2013;8:e72556. http://dx.doi.org/10.1371/journal.pone.0072556.

Whitelaw J, Peter H, Sohn D, Viljoen G, Theron M, Badri V, et al. A comparative cost and performance of lightemitting diode microscopy in HIV–tuberculosis-coinfected patients. Eur Respir J. 2011;38:1393-7. http://dx.doi.org/10.1183/09031936.00023211

Chaidir L, Parwati I, Annisa J, Muhsinin S, Meilana I, Alisjahbana B, et al. Implementation of LED fluorescence microscopy for diagnosis of pulmonary and HIV-associated tuberculosis in a hospital setting in Indonesia. PLoS One. 2013;8:e61727. http://dx.doi.org/10.1371/journal.pone.0061727

Getachew K, Abebe T, Kebede A, Mihret A, Melkamu G. Performance of LED fluorescence microscopy for the diagnosis of pulmonary tuberculosis in HIV positive individuals in Addis Ababa, Ethiopia. Tuberc Res Treat. 2015;2015:794064. http://dx.doi.org/10.1155/2015/794064

Bonnet M, Gagnidze L, Guerin PJ, Bonte L, Ramsay A, Githui W, et al. Evaluation of combined LED-fluorescence microscopy and bleach sedimentation for diagnosis of tuberculosis at peripheral health service level. PLoS One. 2011;6:e20175. http://dx.doi.org/10.1371/journal.pone.0020175

Imaz MS, Sequeira MD. Bacteriological diagnosis of tuberculosis in Argentina: Results of a national survey. Cad Saúde Pública. 2007;23:885-96. http://dx.doi.org/10.1590/S0102-311X2007000400016

Zerbini E, Chirico MC, Salvadores B, Amigot B, Estrada S, Algorry G. Delay in tuberculosis diagnosis and treatment in four provinces of Argentina. Int J Tuberc Lung Dis. 2008;12:63-8.

Ministerio de Salud de Argentina. Manual para el diagnóstico bacteriológico de tuberculosis. Parte II. Cultivo. Buenos Aires: Ministerio de Salud; 2007.

Ministerio de Salud de Argentina. Manual para el diagnóstico bacteriológico de tuberculosis. Parte I. Baciloscopia. Santa Fe: Instituto Nacional de Enfermedades Respiratorias “E. Coni”; 2012.

Rieder H L, van Deun A, Kam K M, Kim S J, Chonde T M, Trébucq A, et al. Priorities for tuberculosis bacteriology services in low-income countries. Second edition. Paris: International Union against Tuberculosis and Lung Disease; 2007.

van Deun A, Chonde M, Gumusboga M, Rienthong S. Performance and acceptability of the FluoLED Easy module for tuberculosis fluorescence microscopy. Int J Tuber Lung

Dis. 2008;12:1009-14.

Xia H, Song YY, Zhao B, Kam K-M, O’Brien RJ, Zhang Z, et al. Multicentre evaluation of Ziehl-Neelsen and lightemitting diode fluorescence microscopy in China. Int J Tuber Lung Dis. 2013;17:107-12. http://dx.doi.org/10.5588/ijtld.12.0184

Reza LW, Satyanarayna S, Enarson DA, Kumar AM, Sagili K, Kumar S, et al. LED-Fluorescence microscopy for diagnosis of pulmonary tuberculosis under programmatic conditions in India. PLoS ONE. 2013;8:e75566. http://dx.doi.org/10.1371/journal.pone.0075566

Perkins M D, Roscigno G, Zumla A. Progress towards improved tuberculosis diagnostics for developing countries. Lancet. 2006;367:942-3.

Mambo-Muvunyi C, Masaisa F, Bayingana C, Musemakweri A, Mutesa L, Carbonell-Hernández T. Prevalence and diagnostic aspects of sputum smear positive tuberculosis cases at a tertiary care institution in Rwanda. Afr J Microbiol Res. 2010;4:88-91.

Marais BJ, Brittle W, Paincyzk K, Hesseling AC, Beyers N, Wasserman E, et al. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin Infect Dis. 2008;47:203-7.

Trusov A, Bumgarner R, Valijev R, Chestnova R, Talevski S, Vragoterova C, et al. Comparison of Lumin LED fluorescent attachment, fluorescent microscopy and Ziehl-Neelsen for AFB diagnosis. Int J Tuber Lung Dis. 2008;13:836-41.

Chang EW, Page AL, Bonnet M. Light-emitting diode fluorescence microscopy for tuberculosis diagnosis: A meta-analysis. Eur Respir J. 2016;47:929-37. http://dx.doi.org/10.1183/13993003.00978-2015

Elliott AM, Halwiindi B, Hayes RJ, Luo N, Tembo G, Machiels L, et al. The impact of human immunodeficiency virus on presentation and diagnosis of tuberculosis in a cohort study in Zambia. J Trop Med Hyg. 1993;96:1-11.

Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: A systematic review. Lancet Infect Dis. 2006;6:664-74. http://dx.doi.org/10.1016/S1473-3099(06)70602-8

Thapa B, Reza LW, Kumar AM, Pandey A, Satyanarayana S, Chadha S. Light Emitting Diode Fluorescence Microscopy increased the detection of smear-positives during follow-up of tuberculosis patients in India: Program implications. BMC Res Notes. 2015;8:596. http://dx.doi.org/10.1186/s13104-015-1584-z

Otero L, van Deun A, Agapito J, Ugaz R, Prellwitz G, Gotuzzo E, et al. Quality assessment of smear microscopy by stratified lot sampling of treatment follow-up slides. Int J Tuberc Lung Dis. 2011;15:211-6.

APHL/CDC/IUATLD/KNCV/RIT/WHO. External quality assessment for AFB smear microscopy. Washington, D.C.: APHL; 2002.

Smithwick RW. Laboratory manual for acid-fast microscopy. Atlanta, GA, USA: US Public Health Service; 1976.

Kubica GP. Correlation of acid-fast staining methods with culture results for mycobacteria. Bull Int Union Tuberc. 1980;55:117-24.

Affolabi D, Torrea G, Odoun M, Senou N, Ali Ligali M, Anagonou S, et al. Comparison of two LED fluorescence microscopy build-on modules for acid-fast smear microscopy. Int J Tuberc Lung Dis. 2010;14:160-9.

Bonnet M, Gagnidze L, Githui W, Guerin PJ, Bonte L, Varaine F, et al. Performance of LED-based fluorescence microscopy to diagnose tuberculosis in a peripheral health centre in Nairobi. PLoS ONE. 2011;6:e17214. http://dx.doi.org/10.1371/journal.pone.0017214.

Das D, Selvakumar N. Can LED fluorescence microscopy replace Ziehl-Neelsen microscopy in tuberculosis detection? Int J Tuberc Lung Dis. 2012;16:1558. http://dx.doi.org/10.5588/ijtld.12.0407

van Deun A, Cattamanchi A, Davis JL, Ridderhof J. In reply. Can LED fluorescence microscopy replace Ziehl-Neelsen microscopy in tuberculosis detection? Int J Tuberc Lung Dis. 2012;16:1558-9. http://dx.doi.org/10.5588/ijtld.12.0407-2

World Health Organization. Rapid implementation of the Xpert MTB/RIF diagnostic test. WHO/HTM/TB/2011.2. Geneva: WHO; 2011. Accessed: February 4, 2016. Available from: http://www.who.int/tb/features_archive/xpert_rapid_tb_test/en/

Álvarez-Uria G, Azcona JM, Midde M, Naik PK, Reddy S, Reddy R. Rapid diagnosis of pulmonary and extrapulmonary tuberculosis in HIV-infected patients. Comparison of LED fluorescent microscopy and the Gene Xpert MTB/RIF assay in a District hospital in India. Tuberc Res Treat. 2012;932862. http://dx.doi.org /10.1155/2012/932862

World Health Organization. Twentieth global report on tuberculosis. WHO/HTM/TB/2015.22. Geneva: World Health Organization; 2015. Accessed: February 15, 2016. Available from: http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf

How to Cite
1.
Imaz M, Allassia S, Aranibar M, Gunia A, Poggi S, Togneri A, et al. Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina. biomedica [Internet]. 2017 Jun. 1 [cited 2024 May 18];37(2):164-7. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3276

Some similar items:

Published
2017-06-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code