Effects of high-intensity interval training compared to moderate-intensity continuous training on maximal oxygen consumption and blood pressure in healthy men: A randomized controlled trial

Víctor Hugo Arboleda-Serna, Yuri Feito, Fredy Alonso Patiño-Villada, Astrid Viviana Vargas-Romero, Elkin Fernando Arango-Vélez, .

Keywords: High-intensity interval training, blood pressure, exercise, cardiorespiratory fitness, randomized controlled trial

Abstract

Introduction: Aerobic exercise generates increased cardiorespiratory fitness, which results in a protective factor for cardiovascular disease. High-intensity interval training (HIIT) might produce higher increases on cardiorespiratory fitness in comparison with moderate-intensity continuous training (MICT); however, current evidence is not conclusive.
Objective: To compare the effects of a low-volume HIIT and a MICT on maximal oxygen consumption (VO2max), systolic blood pressure, and diastolic blood pressure during eight weeks in healthy men between 18 and 44 years of age.
Materials and methods: We conducted a randomized controlled trial. Forty-four volunteers were randomized to HIIT (n=22) or MICT (n=22). Both groups performed 24 sessions on a treadmill. The HIIT group completed 15 bouts of 30 seconds (90-95%, maximal heart rate, HRmax), while the MICT group completed 40 minutes of continuous exercise (65-75% HRmax). 
Results: Intra-group analysis showed an increase in VO2max of 3.5 ml/kg/min [95% confidence interval (CI) 2.02 to 4.93; p=0.0001] in HIIT and 1.9 ml/kg/min (95% CI -0.98 to 4.82; p=0.18) in MICT. However, the difference between the two groups was not statistically significant (1.01 ml/kg/min. 95% CI -2.16 to 4.18, p=0.52). MICT generated a greater reduction in systolic blood pressure compared to HIIT (median 8 mm Hg; p<0.001). No statistically significant differences were found between the groups for DBP.
Conclusions: Results indicated no significant change in VO2max with a low-volume HIIT protocol versus MICT after 24 sessions. In contrast, MICT provided a greater reduction in systolic blood pressure compared to HIIT.

The study is registered as a clinical trial via clinicaltrials.gov with identifier number: NCT02288403.

Downloads

Download data is not yet available.
  • Víctor Hugo Arboleda-Serna Grupo de Investigación en Actividad Física para la Salud, Instituto de Educación Física, Universidad de Antioquia, Medellín, Colombia
  • Yuri Feito Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
  • Fredy Alonso Patiño-Villada Grupo de Investigación en Actividad Física para la Salud, Instituto de Educación Física, Universidad de Antioquia, Medellín, Colombia
  • Astrid Viviana Vargas-Romero Grupo de Investigación en Actividad Física para la Salud, Instituto de Educación Física, Universidad de Antioquia, Medellín, Colombia
  • Elkin Fernando Arango-Vélez Grupo de Investigación en Actividad Física para la Salud, Instituto de Educación Física, Universidad de Antioquia, Medellín, Colombia

References

Adams K. Exercise physiology. In: Swain D, Brawner C, Chamblisss H, Nagelkir P, Paternostro M, Swank A, editors. ACSM`s Resource Manual for Exercise Testing and Prescription. 7th edition. Baltimore: Lippincott Williams & Wilkins; 2014. p. 57-8.

Kenney W, Wilmore J, Costill D. Adaptations to aerobic and anaerobic training. In: Physiology of Sport and Exercise. 5th edition. Champaign, IL: Human Kinetics; 2012. p. 14.

Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, et al. Exercise capacity and the risk of death in women: The St James Women Take Heart Project. Circulation. 2003;108:1554-9. https://doi.org/10.1161/01.CIR.0000091080.57509.E9

Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793-801. https://doi.org/10.1056/NEJMoa011858

Laukkanen JA, Lakka TA, Rauramaa R, Kuhanen R, Venäläinen JM, Salonen R, et al. Cardiovascular fitness as a predictor of mortality in men. Arch Intern Med. 2001;161:825-31. https://doi.org/10.1001/archinte.161.6.825

Thompson WR. Worldwide survey of fitness trends for 2017. ACSM’S Health & Fitness Journal. 2016;20:8-17. https://doi.org/10.1249/FIT.0000000000000252

Thompson WR. Worldwide survey of fitness trends for 2016: 10th anniversary edition. ACSM’S Health & Fitness Journal. 2015;19:9-18. https://doi.org/10.1249/FIT.0b013e3182a955e6

Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation. 2007;115:3086-94. https://doi.org/10.1161/CIRCULATIONAHA.106.675041

Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve V O2max more than moderate training. Med Sci Sports Exerc. 2007;39:665-71. https://doi.org/10.1249/mss.0b013e3180304570

Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS. High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab. 2008;295:E851-E8. https://doi.org/10.1152/ajpendo.90545.2008

Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36:58-63. https://doi.org/10.1097/JES.0b013e318168ec1f

Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, et al. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc. 2010;42:1951-8. https://doi.org/10.1249/MSS.0b013e3181d99203

Ziemann E, Grzywacz T, Luszczyk M, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25:1104-12. https://doi.org/10.1519/JSC.0b013e3181d09ec9

Tjønna AE, Leinan IM, Bartnes AT, Jenssen BM, Gibala MJ, Winett RA, et al. Low-and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PloS One. 2013;8:e65382. https://doi.org/doi.org/10.1371/journal.pone.0065382

Hwang C-L, Wu Y-T, Chou C-H. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: A meta-analysis. J Cardiopulm Rehabil Prev. 2011;31:378-85. https://doi.org/10.1097/HCR.0b013e31822f16cb

Bacon AP, Carter RE, Ogle EA, Joyner MJ. VO2max trainability and high intensity interval training in humans: A meta-analysis. PLoS One. 2013;8:e73182. https://doi.org/10.1371/journal.pone.0073182

Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and metaanalysis of controlled trials. Sports Med. 2015;45:1469-81. https://doi.org/10.1007/s40279-015-0365-0

Hatle H, Støbakk PK, Mølmen HE, Brønstad E, Tjønna AE, Steinshamn S, et al. Effect of 24 sessions of high-intensity aerobic interval training carried out at either high or moderate frequency, a randomized trial. PloS One. 2014;9:e88375. https://doi.org/doi.org/10.1371/journal.pone.0088375

Moholdt TT, Amundsen BH, Rustad LA, Wahba A, Lovo KT, Gullikstad LR, et al. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. Am Heart J. 2009;158:1031-7. https://doi.org/10.1016/j.ahj.2009.10.003

Cornelissen VA, Smart NA. Exercise training for blood pressure: A systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473. https://doi.org/10.1161/JAHA.112.004473

Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2012;19:151-60. https://doi.org/10.1177/1741826711400512

Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334-59. https://doi.org/10.1249/MSS.0b013e318213fefb

Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, Group C. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: Explanation and elaboration. Ann Intern Med. 2008;148:295-309. https://doi.org/10.7326/0003-4819-148-4-200802190-00008

Arboleda-Serna VH, Arango-Vélez EF, Gómez-Arias RD, Feito Y. Effects of a high-intensity interval training program versus a moderate-intensity continuous training program on maximal oxygen uptake and blood pressure in healthy adults: Study protocol for a randomized controlled trial. Trials. 2016;17:413. https://doi.org/10.1186/s13063-016-1522-y

Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4:26. https://doi.org/10.1186/1471-2288-4-26

Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323:1123-4. https://doi.org/10.1136/bmj.323.7321.1123

Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ. 2009;338:b2393. https://doi.org/10.1136/bmj.b2393

Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: A systematic review and meta-analysis. Sports Med. 2014;44:269-79. https://doi.org/10.1007/s40279-013-0115-0

Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br J Sports Med. 2014;48:1227-34. https://doi.org/10.1136/bjsports-2013-092576

Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Med. 2014;44:1005-17. https://doi.org/10.1007/s40279-014-0180-z

Liou K, Ho S, Fildes J, Ooi SY. High intensity interval versus moderate intensity continuous training in patients with coronary artery disease: A meta-analysis of physiological and clinical parameters. Heart Lung Circ. 2016;25:166-74. https://doi.org/10.1016/j.hlc.2015.06.828

Elliott AD, Rajopadhyaya K, Bentley DJ, Beltrame JF, Aromataris EC. Interval training versus continuous exercise in patients with coronary artery disease: A meta-analysis. Heart Lung Circ. 2015;24:149-57. https://doi.org/10.1016/j.hlc.2014.09.001

Pattyn N, Coeckelberghs E, Buys R, Cornelissen VA, Vanhees L. Aerobic interval training vs. moderate continuous training in coronary artery disease patients: A systematic review and meta-analysis. Sports Med. 2014;44:687-700. https://doi.org/10.1007/s40279-014-0158-x

Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol. 2013;111:1466-9. https://doi.org/10.1016/j.amjcard.2013.01.303

Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J Am Coll Cardiol. 2003;42:2139-43. https://doi.org/10.1016/j.jacc.2003.07.028

Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 2009;301:2024-35. https://doi.org/10.1001/jama.2009.681

Abel U, Koch A. The role of randomization in clinical studies: Myths and beliefs. J Clin Epidemiol. 1999;52:487-97. https://doi.org/10.1016/S0895-4356(99)00041-4

Fernández-Vaquero A. Consumo de oxígeno: concepto, bases fisiológicas y aplicaciones. In: López-Chicharro J, Fernández -Vaquero A, editors. Fisiología del Ejercicio. 3rd edición. Madrid: Panamericana; 2008. p. 409-10.

Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand J Med Sci Sports. 2013;23:e341-52. https://doi.org/10.1111/sms.12092

Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015;45:679-92. https://doi.org/10.1007/s40279-015-0321-z

Buckley S, Knapp K, Lackie A, Lewry C, Horvey K, Benko C, et al. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl Physiol Nutr Metab. 2015;40:1157-62. https://doi.org/10.1139/apnm-2015-0238

Currie KD, Bailey KJ, Jung ME, McKelvie RS, MacDonald MJ. Effects of resistance training combined with moderate-intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. J Sci Med Sport. 2015;18:637-42. https://doi.org/10.1016/j.jsams.2014.09.013

How to Cite
1.
Arboleda-Serna VH, Feito Y, Patiño-Villada FA, Vargas-Romero AV, Arango-Vélez EF. Effects of high-intensity interval training compared to moderate-intensity continuous training on maximal oxygen consumption and blood pressure in healthy men: A randomized controlled trial. biomedica [Internet]. 2019 Sep. 1 [cited 2024 May 19];39(3):524-36. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/4451

Some similar items:

Published
2019-09-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code