Trypanosoma cruzi strains resistant to benznidazole occurring in Colombia

Ana María Mejía-Jaramillo, Geysson Javier Fernández, Marleny Montilla, Rubén Santiago Nicholls, Omar Triana-Chávez, .

Keywords: Trypanosoma cruzi, Chagas disease/therapy, immunity, innate, Colombia

Abstract

Introduction. Chagas disease caused by Trypanosoma cruzi is one of the most serious public health problems in the Americas. Benznidazole is one of two drugs used to treat Chagas’ disease. However, the variation in susceptibility of the parasite to this drug is one of the main causes of treatment failure.

Objective. The in vitro susceptibility to benznidazole was assessed in Colombian strains of T. cruzi from several sources and geographical regions.

Materials and methods. Thirty-three Colombian T. cruzi strains were isolated from humans, vectors and mammals. These were analyzed in vitro by the MTT enzymatic micromethod to determine the IC50 to benznidazole. Additionally, the in vitro susceptibility was correlated with several biological and ecoepidemiological parameters.

Results. Thirty-six percent of the strains were considered to be sensitive, 48% partially resistant, and 16% were resistant. Correlations between the IC50 and several biological and eco-epidemiological parameters indicated that differences in susceptibility depended on the biological source and geographical origin of the strain.

Conclusions. A high degree of variability exists in the susceptibility to benznidazole of T. cruzi strains in Colombia. The distribution data indicate the presence and circulation of naturally resistant strains.

Downloads

Download data is not yet available.
  • Ana María Mejía-Jaramillo Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia

    Ana Maria Mejia Jaramillo

    Investigadora Asociada,

    Grupo Biologia y Control de enfermedades Infecciosas

    Universidad de Antioquia

    Medellín, Colombia

  • Geysson Javier Fernández Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
  • Marleny Montilla Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Rubén Santiago Nicholls Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Omar Triana-Chávez Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia

References

Pinto-Dias J, Schofield C. Social and medical aspects: Morbidity and mortality in general population. En: Telleria J, Tibayrenc M, editors. American trypanosomiasis Chagas disease. One hundred years of research. First edition. London: Elsevier; 2010. p. 45-54.

Patterson J, Guhl F. Geographical distribution of Chagas disease. En: Telleria J, Tibayrenc M, editors. American trypanosomiasis Chagas disease. One hundred years of research. First edition. London: Elsevier; 2010. p. 83-114.

Moncayo A, Silveira A. Current trends and future prospects for control of Chagas disease. En: Telleria J, Tibayrenc M, editors. American trypanosomiasis Chagas disease. One hundred years of research. First edition. London: Elsevier; 2010. p. 55-82.

Moncayo A. Chagas disease: Current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries. Mem Inst Oswaldo Cruz. 2003;98:577-91. doi: http://dx.doi.org/10.1590/S0074-02762003000500001

López-Antuñano FJ. Quimioterapia de las infecciones producidas por Trypanosoma cruzi. Salud Pública Mex. 1997;39:463-71. doi: http://dx.doi.org/10.1590/S0036-36341997000500009

Rodrigues J, Castro S. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz. 2002;97:3-24. doi: http://dx.doi.org/10.1590/S0074-02762002000100001

Wilkinson SR, Kelly JM. Trypanocidal drugs: Mechanisms, resistance and new targets. Expert Rev Mol Med. 2009;11:1-24.doi: http://dx.doi.org/10.1017/S1462399409001252

Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987;81:755-9. doi: http://dx.doi.org/10.1016/0035-9203(87)90020-4

Hayes JD, Wolf CR. Molecular mechanisms of drug resistance. Biochem J. 1990;272:281-95. PMid:1980062 PMCid:1149697

Ouellette M. Biochemical and molecular mechanisms of drug resistance in parasites. Trop Med Int Health. 2001;6:874-82. doi: http://dx.doi.org/10.1046/j.1365-3156.2001.00777.x

Singh N. Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res. 2006;123:411-22. PMid:16778320

Mejía-Jaramillo AM, Fernández GJ, Palacio L, Triana O. Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to beznidazole in Trypanosoma cruzi. Parasit Vectors. 2011;4:1-12. PMid:21205315 MCid:3043528

Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA. 2008;105:5022-7. doi: http://dx.doi.org/10.1073/pnas.0711014105

Villarreal D, Nirde P, Hide M, Barnabe C, Tibayrenc M. Differential gene expression in benznidazole-resistant Trypanosoma cruzi parasites. Antimicrob Agents Chemother. 2005;49:2701-9. doi: http://dx.doi.org/10.1128/AAC.49.7.2701-2709.2005

Nirdé P, Larroque C, Barnabé C. Drug-resistant epimastigotes of Trypanosoma cruzi and persistence of this phenotype after differentiation into amastigotes. C R Acad Sci Ser. 1995;318:1239-44.

Andrade HM, Murta SM, Chapeaurouge A, Perales J, Nirdé P, Romanha AJ. Proteomic analysis of Trypanosoma cruzi resistance to benznidazole. J Proteome Res. 2008;7:2357-67. doi: http://dx.doi.org/10.1021/pr700659m

Campos FM, Liarte DB, Mortara RA, Romanha AJ, Murta SM. Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and -resistant populations of Trypanosoma cruzi. Acta Trop. 2009;111:56-63. doi: http://dx.doi.org/10.1016/j.actatropica.2009.02.007

Murta SM, Krieger MA, Montenegro LR, Campos FF, Probst CM, Avila AR, et al. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P) H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol Biochem Parasitol. 2006;146:151-62. doi: http://dx.doi.org/10.1016/j.molbiopara.2005.12.001

Murta SM, Nogueira FB, dos Santos PF, Campos FF, Volpe C, Liarte DB, et al. Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Trop. 2008;107:59-65. doi: http://dx.doi.org/10.1016/j.actatropica.2008.04.011

Nogueira FB, Krieger MA, Nirde P, Goldenberg S, Romanha AJ, Murta SM. Increased expression of ironcontaining superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Trop. 2006;100:119-32. doi: http://dx.doi.org/10.1016/j.actatropica.2006.10.004

Nogueira FB, Ruiz JC, Robello C, Romanha AJ, Murta SM. Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Parasitol Res. 2009;104:835-44. doi: http://dx.doi.org/10.1007/s00436-008-1264-1

Villarreal D, Barnabe C, Sereno D, Tibayrenc M. Lack of correlation between in vitro susceptibility to benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease. Exp Parasitol. 2004;108:24-31. doi: http://dx.doi.org/10.1016/j.exppara.2004.07.001

Murta SM, Gazzinelli RT, Brener Z, Romanha AJ. Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biochem Parasitol. 1998;93:203-14. doi: http://dx.doi.org/10.1016/S0166-6851(98)00037-1

Guhl F, Nicholls R, Montoya R, Rosas F, Velasco V, Mora E, et al. Rapid negativization of serology after treatment with benznidazole for Chagas disease in a group of Colombian schoolchildren. Proceedings of the IX European Multicolloquim of Parasitology. Valencia: Medimond International Proceedings; 2004. p. 107-14.

Padilla J. Situación de la enfermedad de Chagas en Colombia. Primer Taller Internacional Sobre Control de la Enfermedad de Chagas, Curso de diagnóstico, manejo y tratamiento de la enfermedad de Chagas, VI Reunión de la Iniciativa Andina para el Control de la Enfermedad de Chagas. Bogotá: CIMPAT; 2005. p. 19-22.

Guhl F, Angulo V, Restrepo M, Nicholls S, Montoya R. Estado del arte de la enfermedad de Chagas en Colombia y estrategias de control. Biomédica. 2003;23:31-3. PMid:12696397

Reed GF, Lynn F, Meade BD. Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol. 2002;9:1235-9. PMid:12414755 PMCid:130103

Guhl F, Lazdins-Helds J. Grupo de trabajo científico sobre la enfermedad de Chagas. Buenos Aires: Organización Mundial de la Salud; 2007.

Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: Controversies and advances. Trends Parasitol. 2003;19:495-501. doi: http://dx.doi.org/10.1016/j.pt.2003.09.001

Buckner FS, Navabi N. Advances in Chagas disease drug development: 2009-2010. Curr Opin Infect Dis. 2010; 23:609-16. doi: http://dx.doi.org/10.1097/QCO.0b013e3283402956

Boiani M, Boiani L, Merlino A, Hernández P, Chidichimo A, Cazzulo JJ, et al. Second generation of 2H-benzimidazole 1,3-dioxide derivatives as anti-trypanosomatid agents: Synthesis, biological evaluation, and mode of action studies. Eur J Med Chem. 2009;44:4426-33. doi: http://dx.doi.org/10.1016/j.ejmech.2009.06.014

Boiani M, Piacenza L, Hernández P, Boiani L, Cerecetto H, González M, et al. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved? Biochem Pharmacol. 2010;79:1736-45. doi: http://dx.doi.org/10.1016/j.bcp.2010.02.009

Castro D, Boiani L, Benítez D, Hernández P, Merlino A, Gil C, et al. Anti-trypanosomatid benzofuroxans and deoxygenated analogues: Synthesis using polymersupported triphenylphosphine, biological evaluation and mechanism of action studies. Eur J Med Chem. 2009;44:5055-65. doi: http://dx.doi.org/10.1016/j.ejmech.2009.09.009

Gerpe A, Álvarez G, Benítez D, Boiani L, Quiroga M, Hernández P, et al. 5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene. Bioorg Med Chem. 2009;17:7500-9. doi: http://dx.doi.org/10.1016/j.bmc.2009.09.013

Gerpe A, Boiani L, Hernández P, Sortino M, Zacchino S, González M, et al. Naftifine-analogues as anti-Trypanosoma cruzi agents. Eur J Med Chem. 2010;45:2154-64. doi: http://dx.doi.org/10.1016/j.ejmech.2010.01.052

Pagano M, Demoro B, Toloza J, Boiani L, González M, Cerecetto H, et al. Effect of ruthenium complexation on trypanocidal activity of 5-nitrofuryl containing thiosemicarbazones. Eur J Med Chem. 2009;44:4937-43. doi: http://dx.doi.org/10.1016/j.ejmech.2009.08.008

Rodríguez J, Arán VJ, Boiani L, Olea-Azar C, Lavaggi ML, González M, et al. New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: Synthesis, biological evaluation, and mechanism of action studies. Bioorg Med Chem. 2009;17:8186-96. doi: http://dx.doi.org/10.1016/j.bmc.2009.10.030

Urbina JA. Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches. Acta Trop. 2010;115:55-68. doi: http://dx.doi.org/10.1016/j.actatropica.2009.10.023

Maya JD, Cassels BK, Iturriaga-Vásquez P, Ferreira J, Faundez M, Galanti N, et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol. 2007;146:601-20. doi: http://dx.doi.org/10.1016/j.cbpa.2006.03.004

Maya JD, Bollo S, Núñez-Vergara LJ, Squella JA, Repetto Y, Morello A, et al. Trypanosoma cruzi: Effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochem Pharmacol. 2003;65:999-1006. doi: http://dx.doi.org/10.1016/S0006-2952(02)01663-5

Hall BS, Wu X, Hu L, Wilkinson SR. Exploiting the drugactivating properties of a novel trypanosomal nitroreductase. Antimicrob Agents Chemother. 2010;54:1193-9. doi: http://dx.doi.org/10.1128/AAC.01213-09

Hall BS, Bot C, Wilkinson SR. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem. 2011;286:13088-95. doi: http://dx.doi.org/10.1074/jbc.M111.230847

Toledo MJ, Bahia MT, Carneiro CM, Martins-Filho OA, Tibayrenc M, Barnabe C, et al. Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes. Antimicrob Agents Chemother. 2003;47:223-30. doi: http://dx.doi.org/10.1128/AAC.47.1.223-230.2003

Veloso VM, Carneiro CM, Toledo MJ, Lana M, Chiari E, Tafuri WL, et al. Variation in susceptibility to benznidazole in isolates derived from Trypanosoma cruzi parental strains. Mem Inst Oswaldo Cruz. 2001;96:1005-11. doi: http://dx.doi.org/10.1590/S0074-02762001000700021

Camandaroba EL, Reis EA, Goncalves MS, Reis MG, Andrade SG. Trypanosoma cruzi: Susceptibility to chemotherapy with benznidazole of clones isolated from the highly resistant Colombian strain. Rev Soc Bras Med Trop. 2003;36:201-9. doi: http://dx.doi.org/10.1590/S0037-86822003000200002

Triana O, Mejía A, Zapata C, Arboleda A, Dib J. Caracterización genética y sensibilidad al benzonidazole de cepas colombianas de Trypanosoma cruzi. Biomédica. 2005;25:82-5.

Luna KP, Hernández IP, Rueda CM, Zorro MM, Croft SL, Escobar P. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole. Biomédica. 2009;29:448-55. PMid:20436996

Murta SM, Romanha AJ. In vivo selection of a population of Trypanosoma cruzi and clones resistant to benznidazole. Parasitol. 1998;116:165-71. doi: http://dx.doi.org/10.1017/S0031182097002084

Moreno M, D’ávila DA, Silva MN, Galvão LM, Macedo AM, Chiari E, et al. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease. Mem Inst Oswaldo Cruz. 2010;105:918-24. doi: http://dx.doi.org/10.1590/S0074-02762010000700014

Tibayrenc M, Ward P, Moya A, Ayala FJ. Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proc Natl Acad Sci USA. 1986;83:115-9. doi: http://dx.doi.org/10.1073/pnas.83.1.115

Macedo AM, Machado CR, Oliveira RP, Pena SD. Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem Inst Oswaldo Cruz. 2004;99:1-12. doi: http://dx.doi.org/10.1590/S0074-02762004000100001

Borst P, Oullette M. New mechanism of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427-60. doi: http://dx.doi.org/10.1146/annurev.mi.49.100195.002235

El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother. 2005;49:1988-93. doi: http://dx.doi.org/10.1128/AAC.49.5.1988-1993.2005

Ouellette M, Legare D, Papadopoulou B. Multidrug resistance and ABC transporters in parasitic protozoa. J Mol Microbiol Biotechnol. 2001;3:201-6. PMid:11321574

Singh AK, Papadopoulou B, Ouellette M. Gene amplification in amphotericin B-resistant Leishmania tarentolae. Exp Parasitol. 2001;99:141-7. doi: http://dx.doi.org/10.1006/expr.2001.4663

How to Cite
1.
Mejía-Jaramillo AM, Fernández GJ, Montilla M, Nicholls RS, Triana-Chávez O. Trypanosoma cruzi strains resistant to benznidazole occurring in Colombia. biomedica [Internet]. 2012 Jun. 30 [cited 2024 May 17];32(2):196-205. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/458

Some similar items:

Published
2012-06-30
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code