Quantitative analysis of the expression of fluconazole-resistant genes in strains of Candida albicans isolated from elderly people at their admission in an intensive care unit in Manizales, Colombia

Ana Elisa Rojas, Jorge Enrique Pérez, Johan Sebastián Hernández, Yuliana Zapata, .

Keywords: Candida albicans, fluconazole, drug resistance, fungal, drug resistance, multiple, fungal

Abstract

Introduction: Opportunistic infections associated with Candida albicans have had a great impact on public health due to the mortality they generate in certain population groups. Although pharmacological treatments are available, the resistance developed by the pathogen has become increasingly evident. For this reason, determining the mechanisms of resistance associated with the strains found in different hospital areas is important since it would help improving treatment plans.
Objective: To analyze the expression of ERG11, CDR1, and MDR1 genes in strains of C. albicans isolated from elderly patients at admittance in the intensive care unit of Hospital Santa Sofía in Manizales, Colombia.
Materials and methods: A total of 29 samples (21 resistant and 8 sensitive) were selected and distributed in two working groups: with and without exposure to fluconazole. The extracted RNA was quantified by real-time reverse transcription polymerase chain reaction (RT-qPCR).
Results: Significant differences were found in the expression of the MDR1 gene in the group of resistant C. albicans strains. Two of the resistant strains (104 and 62-2) exposed to the antifungal showed very high values in the expression of this gene. The expression of ERG11 and CDR1 was not significant among the groups studied.
Conclusion: The increased overexpression of the MDR1 gene indicates that it may be responsible for the resistance. However, some resistant strains did not overexpress any of the genes analyzed, which indicates that there may be other genes involved in the resistance of the strains under study.

Downloads

Download data is not yet available.
  • Ana Elisa Rojas Grupo de Investigación en Enfermedades Infecciosas, Universidad Católica de Manizales, Manizales, Colombia https://orcid.org/0000-0002-8421-633X
  • Jorge Enrique Pérez Grupo de Investigación Médica, Universidad de Manizales, Manizales, Colombia; Grupo de Resistencia Antibiótica de Manizales, Manizales, Colombia https://orcid.org/0000-0002-7829-6505
  • Johan Sebastián Hernández Grupo de Investigación Médica, Universidad de Manizales, Manizales, Colombia; Grupo de Resistencia Antibiótica de Manizales, Manizales, Colombia https://orcid.org/0000-0001-9807-1090
  • Yuliana Zapata Grupo de Investigación en Enfermedades Infecciosas, Universidad Católica de Manizales, Manizales, Colombia; Grupo de Resistencia Antibiótica de Manizales, Manizales, Colombia https://orcid.org/0000-0002-7771-7179

References

Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009;11:753-61. https://doi.org/10.1016/j.micinf.2009.04.018

Andes D. Clinical utility of antifungal pharmacokinetics and pharmacodynamics. Curr Opin Infect Dis. 2004;17:533-40.

Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503-35. https://doi.org/10.1086/596757

Cortés JA, Reyes P, Gómez C, Buitrago G, Leal AL. Fungal bloodstream infections in tertiary care hospitals in Colombia. Rev Iberoam Micol. 2011;28:74-8. https://doi.org/10.1016/j.riam.2010.12.002

De Bedout C, Ayabaca J, Vega R, Méndez M, Santiago ÁR. Evaluación de la susceptibilidad de especies de Candida al fluconazol por el método de difusión de disco. Biomédica. 2003;23:31-7. https://doi.org/10.7705/biomedica.v23i1.1195

Gutiérrez C, De Bedout C, Tobón AM, Cano LE, Arango M, Tabares AM, et al. Sensibilidad a fluconazol y voriconazol de aislamientos de Candida spp., obtenidos de mucosa oral de pacientes con sida. Infectio. 2008;11:183-9.

Duque C, Gómez B, Uribe O, Alarcón J, Soto F, Urán L, et al. Caracterización de la candidiasis vulvovaginal en mujeres de la ciudad de Medellín, Colombia. Nova. 2009;7:157-60.

Maldonado NA, Cano LE, De Bedout C, Arbeláez CA, Roncancio G, Tabares AM, et al. Association of clinical and demographic factors in invasive candidiasis caused by fluconazoleresistant Candida species: A study in 15 hospitals, Medellín, Colombia 2010-2011. Diagn Microbiol Infect Dis. 2014;79:280-6. https://doi.org/10.1016/j.diagmicrobio.2014.02.003

Hernández JS. Estudio básico-clínico de la colonización de especies de candida en adultos mayores al ingreso de cuidados intensivos (tesis). Manizales: Universidad de Caldas; 2015.

Kanafani ZA, Perfect JR. Resistance to antifungal agents: Mechanisms and clinical impact. Clin Infect Dis. 2008;46:120-8. https://doi.org/10.1086/524071

Pemán J, Cantón E, Espinel-Ingroff A. Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther. 2009;7:453-60. https://doi.org/10.1586/eri.09.18

Rocha MF, Bandeira SP, De Alencar LP, Melo LM, Sales JA, Paiva M de AN, et al. Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression. Mycoses. 2017;60:462-8. https://doi.org/10.1111/myc.12611

Mandal A, Kumar A, Singh A, Lynn AM, Kapoor K, Prasad R. A key structural domain of the Candida albicans Mdr1 protein. Biochem J. 2012;445:313-22. https://doi.org/10.1042/BJ20120190

White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate, with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997;41:1482-7. https://doi.org/10.1128/AAC.41.7.1482

Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett. 1997;149:141-9. https://doi.org/10.1111/j.1574-6968.1997.tb10321.x

Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359:1135-44. https://doi.org/10.1016/S01406736(02)08162-X

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611-22. https://doi.org/10.1373/clinchem.2008.112797

Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeast. Third edition. Wayne: CLSI; 2008.

Chau AS, Mendrick CA, Sabatelli FJ, Mcnicholas PM, Loebenberg D. Application of realtime quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother. 2004;48:2124-31. https://doi.org/10.1128/AAC.48.6.2124-2131.2004

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262

Zuluaga A, de Bedout C, Agudelo CA, Hurtado H, Arango M, Restrepo Á, et al. Sensibilidad a fluconazol y voriconazol de especies de Candida aisladas de pacientes provenientes de unidades de cuidados intensivos en Medellín, Colombia (2001-2007). Rev Iberoam Micol. 2010;27:125-9. https://doi.org/10.1016/j.riam.2010.04.001

White TC, Holleman S, Dy F, Stevens DA, Mirels LF. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother. 2002;46:1704-13. https://doi.org/10.1128/AAC.46.6.1704-1713.2002

Perea S, López-Ribot JL, Kirkpatrick WR, Mcatee RK, Santillán RA, Martínez M, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45:2676-84. https://doi.org/10.1128/AAC.45.10.2676–2684.2001

Mane A, Vidhate P, Kusro C, Waman V, Saxena V, Kulkarni-Kale U, et al. Molecular mechanisms associated with fluconazole resistance in clinical Candida albicans isolates from India. Mycoses. 2016;59:93-100. https://doi.org/10.1111/myc.12439

Salari S, Khosravi AR, Mousavi SAA, Nikbakht-Brojeni GH. Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis. J Mycol Med. 2016;26:35-41. https://doi.org/10.1016/j.mycmed.2015.10.007

Tavakoli M, Zaini F, Kordbacheh M, Safara M, Raoofian R, Heidari M. Upregulation of the ERG11 gene in Candida krusei by azoles. Daru. 2010;18:276-80.

Hiller D, Sanglard D, Morschhauser J. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother. 2006;50:1365-71. https://doi.org/10.1128/AAC.50.4.1365-1371.2006

Correa RA. Evaluación de mutaciones del gen ERG11 como causa de resistencia al fluconazol en aislamientos clinicos de pacientes colonizados por C. albicans obtenidas de adultos mayores en la unidad de cuidado intensivo del Hospital Santa Sofía de Manizales - Colombia (tesis). Manizales: Universidad de Caldas; 2016.

Franz R, Kelly SL, Lamb DC, Kelly DE, Ruhnke M, Morschhäuser J. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother. 1998;42:3065-72. https://doi.org/10.1128/AAC.42.12.3065

Franz R, Ruhnke M, Morschhäuser J. Molecular aspects of fluconazole resistance development in Candida albicans. Mycoses. 1999;42:453-8. https://doi.org/10.1046/j.1439-0507.1999.00498.x

López-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, et al. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother. 1998;42:2932-7. https://doi.org/10.1128/AAC.42.11.2932

Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995;39:2378-86. https://doi.org/10.1128/AAC.39.11.2378

Khosravi Rad K, Falahati M, Roudbary M, Farahyar S, Nami S. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis. Curr Med Mycol. 2016;2:24-9. https://doi.org/10.18869/acadpub.cmm.2.4.24

Wirsching S, Michel S, Köhler G, Morschhäuser J. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol. 2000;182:400-4. https://doi.org/10.1128/JB.182.2.400-404.2000

Wirsching S, Michel SM. Targeted gene disruption in Candida albicans wild-type strains: The role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol. 2000;36:856-65. https://doi.org/10.1046/j.1365-2958.2000.01899.x

Wirsching S, Moran GP, Sullivan DJ, Coleman DC. MDR1-mediated drug resistance in Candida dubliniensis. Antimicrob Agents Chemother. 2001;45:3416-21. https://doi.org/10.1128/AAC.45.12.3416-3421.2001

Karababa M, Coste AT, Rognon B, Bille J, Sanglard D. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother. 2004;48:3064-79. https://doi.org/10.1128/AAC.48.8.3064-3079.2004

Kusch H, Biswas K, Schwanfelder S, Engelmann S, Rogers PD, Hecker M, et al. A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Mol Genet Genomics. 2004;271:554-65. https://doi.org/10.1007/s00438-004-0984-x

Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Society. 2003;47:1220-7. https://doi.org/10.1128/AAC.47.4.1220-1227.2003

Park S, Perlin DS. Establishing surrogate markers for fluconazole resistance in Candida albicans. Microb drug Resist. 2005;11:232-8. https://doi.org/10.1089/mdr.2005.11.232

Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. J Med Microbiol. 2011;60:1241-7. https://doi.org/10.1099/jmm.0.030692-0

Morschhäuser J, Barker KS, Liu TT, BlaB-Warmuth J, Homayouni R, Rogers PD. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 2007;3:1603-16. https://doi.org/10.1099/jmm.0.030692-0

Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother. 2013;57:3182-93. https://doi.org/10.1128/AAC.00555-13

Marchaim D, Lemanek L, Sobel JD, Kaye KS. Fluconazole-resistant Candida albicans vulvovaginitis. Obstet Gynecol. 2012;120:1407-14. https://doi.org/10.1097/AOG.0b013e31827307b2

How to Cite
1.
Rojas AE, Pérez JE, Hernández JS, Zapata Y. Quantitative analysis of the expression of fluconazole-resistant genes in strains of Candida albicans isolated from elderly people at their admission in an intensive care unit in Manizales, Colombia. biomedica [Internet]. 2020 Mar. 1 [cited 2024 May 16];40(1):153-65. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/4723

Some similar items:

Published
2020-03-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code