Natural SARS-CoV- 2 infection in domestic cats and dogs of humans diagnosed with COVID-19 in Valle de Aburrá, Antioquia

Azucena Cabrera , Dubán González-Álvarez , Luz A. Gutiérrez , Francisco J. Díaz, Diego Forero , Juan David Rodas , .

Keywords: Coronavirus infections, severe acute respiratory syndrome, zoonoses, zoonotic transmission, phylogenetic analysis, viral host

Abstract

Introduction: The severe acute respiratory syndrome caused by the new coronavirus SARS-CoV-2 is the cause of the health emergency due to the COVID-19 pandemic.
Although humans are the main susceptible host, experimental studies and reported cases of natural infection have evidenced scenarios of SARS-CoV-2 reverse zoonosis in animals.
Objective: To evaluate the natural infection of SARS-CoV-2 in cats and dogs with owners diagnosed with COVID-19 in the Valle de Aburrá subregion in Antioquia, Colombia.
Materials and methods. The circulation of SARS-CoV-2 was evaluated by RT-qPCR and RT-PCR in samples of nasopharyngeal and oropharyngeal smears from cats and dogs whose owners presented latent COVID-19 infection. Positive cases were verified through amplification of N, E and RdRp gene fragments; with the latter being sequenced and the phylogenetically analyzed
Results. From 80 tested animals, 6 cats and 3 dogs resulted positive for natural SARSCoV-2 infection. These animals did not show any clinical signs; and their infected owners only reported mild signs of COVID-19, without clinical complications. Regarding analysis of one of the sequences, a single nucleotide polymorphism (SNP) was found, with a substitution in position 647, resulting in the change of the amino acid serine (S) for isoleucine (I). The cases occurred in the municipalities of Caldas, Medellín and Envigado.
Conclusions. It is inferred that natural infection in cats and dogs is associated with direct contact with a positive COVID-19 patient.

Downloads

Download data is not yet available.
  • Azucena Cabrera Grupo de Investigación de Medicina Veterinaria, Facultad de Ciencias Administrativas y Agropecuarias, Unilasallista Corporación Universitaria, Caldas, Antioquia, Colombia; Programa de Maestría en Epidemiología, Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, D.C., Colombia https://orcid.org/0000-0003-1527-1885
  • Dubán González-Álvarez Grupo de Investigación en Ingeniería de Alimentos, Facultad de Ingeniería, Unilasallista Corporación Universitaria, Caldas, Antioquia, Colombia https://orcid.org/0000-0002-3358-2778
  • Luz A. Gutiérrez Grupo de Investigación en Producción, Desarrollo y Transformación Agropecuaria, Facultad de Ciencias Administrativas y Agropecuarias, Unilasallista Corporación Universitaria, Caldas, Antioquia, Colombia https://orcid.org/0000-0003-1174-5553
  • Francisco J. Díaz Grupo de Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia https://orcid.org/0000-0002-2875-7393
  • Diego Forero Programa Profesional en Terapia Respiratoria, Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, D.C., Colombia https://orcid.org/0000-0001-9175-3363
  • Juan David Rodas Grupo de Investigación en Ciencias Veterinarias, Facultad de Ciencias Agropecuarias, Universidad de Antioquia, Medellín, Antioquia, Colombia https://orcid.org/0000-0002-7054-9918

References

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-92. https://doi.org/10.1038/s41579-018-0118-9

Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis. 2020;94:44-8. https://doi.org/10.1016/j.ijid.2020.03.004

Instituto Nacional de Salud. COVID-19 en Colombia. Fecha de consulta: 22 de octubre de 2021. Disponible en: https://www.ins.gov.co/Noticias/paginas/coronavirus.aspx

Global Change Data Lab. Statistics and Research Coronavirus Pandemic (COVID-19). Fecha de consulta: 22 de octubre de 2021. Disponible en: https://ourworldindata.org/coronavirus

Leroy EM, Ar Gouilh M, Brugère-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health. 2020 10:100133. https://doi.org/10.1016/j.onehlt.2020.100133

Organización Mundial de Sanidad Animal (OIE). Sistema Mundial de Información Zoosanitaria (OIE-WAHIS). Fecha de consulta: 22 de octubre de 2022. Disponible en: https://wahis.oie.int/#/home

Bonilla-Aldana DK, García-Barco A, Jiménez-Díaz SD, Bonilla-Aldana JL, Cardona-Trujillo MC, Muñoz-Lara F, et al. SARS-CoV-2 natural infection in animals: A systematic review of studies and case reports and series. Vet Q . 2021;41:250-67. https://doi.org/10.1080/01652176.2021.197028

Rivero R, Garay E, Serrano-Coll H, Ramírez JD, Martínez-Bravo C, Mattar S, et al. Humanto-dog transmission of SARS-CoV-2 lota variant: Should COVID-19 patients avoid close contact with their pets during illness? Sci Rep. 2021;1-15. https://doi.org/10.21203/rs.3.rs-821033/v1

Wang H, Wang F, Wang H, Zhao Q. Potential infectious risk from the pets carrying SARSCoV-2. Travel Med Infect Dis. 2020;35:101737. https://doi.org/10.1016/j.tmaid.2020.101737

Boklund A, Hammer AS, Quaade ML, Rasmussen TB, Lohse L, Strandbygaard B, et al. SARS-CoV-2 in Danish mink farms: Course of the epidemic and a descriptive analysis of the outbreaks in 2020. Animals (Basel). 2021;11:164. https://doi.org/10.3390/ani11010164

Departamento Administrativo Nacional de Estadística DANE. Censo Nacional de Población y Vivienda 2018 Colombia. Fecha de consulta: 20 de octubre de 2021. Disponible en: https://www.dane.gov.co/index.php/estadisticas

Ministerio de Salud y Protección Social. Lineamientos para el uso de pruebas diagnósticas de laboratorio durante la pandemia del SARS-CoV-2 (Covid-19) en Colombia. Fecha de consulta: 20 de octubre de 2021 .Disponible en : https://www.minsalud.gov.co/Ministerio/Institucional/Procesos y procedimientos/GIPS21.pdf

Ministerio de Salud y Protección Social. Orientaciones para el uso adecuado de los elementos de protección personal por parte de los trabajadores de la salud expuestos a COVID-19 en el trabajo y en su domicilio. Fecha de consulta: 20 de junio de 2021. Disponible en: https://www.minsalud.gov.co/Ministerio/Institucional/Procesos y procedimientos/GIPS20.pdf

Shi J, Wen Z, Zhong G, Yang H, Wang C, Liu R, et al. Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2. Science. 2020;368:1016-20. https://doi.org/10.1126/science.abb7015

World Organisation for Animal Health. Considerations for sampling, testing, and reporting of SARS-CoV-2 in animals. Fecha de consulta: 20 junio de 2021. Disponible en: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/COV-19/Sampling_Testing_and_Reporting_of_SARS-CoV-2_in_animals_final_7May_2020.pdf

Attelia-Dawn H. Diagnostic testing for COVID-19 bridging study for QIAamp viral RNA extraction vs Beckman RNAdvance vs Thermofisher MagMAX. Oak Ridge: U.S. Department of Energy; 2021. https://doi.org/10.2172/1766984

Kaya H, Çalışkan A, Okul M, Sarı T, Akbudak İH. Detection of SARS-CoV-2 in the tears and conjunctival secretions of Coronavirus disease 2019 patients. J Infect Dev Ctries. 2020;14:977-81. https://doi.org/10.3855/jidc.13224

Peleg O, Baneth G, Eyal O, Inbar J, Harrus S. Multiplex real-time qPCR for the detection of Ehrlichia canis and Babesia canis vogeli. Veterinary Parasitology. 2010;173:292-9. https://doi.org/10.1016/j.vetpar.2010.06.039

Yamashita-Kawanishi N, Sawanobori R, Matsumiya K, Uema A, Chambers JK, Uchida K, et al. Detection of Felis catus papillomavirus type 3 and 4 DNA from squamous cell carcinoma cases of cats in Japan. J Vet Med Sci. 2018;80:1236-40. https://doi.org/10.1292/jvms.18-0089

Hall T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium 1999;40:95-8.

Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120

Trifinopoulos J, Nguyen L, von Haeseler A, Minh B. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucl Acids Res. 2016;44:W232-5. https://doi.org/10.1093/nar/gkw256

Letunic I, Bork P. Interactive Tree of Life iTOL v5: An online tool for phylogenetic tree display and annotation. Nucl Acids Res. 2021;49:W293-6. https://doi.org/10.1093/nar/gkab301

Muñoz M, Patiño LH, Ballesteros N, Castañeda S, Luna N, Delgado L, et al. Striking lineage diversity of severe acute respiratory syndrome coronavirus 2 from non-human sources. One Health. 2022;14:100363. https://doi.org/10.1016/j.onehlt.2021.100363

Calvet GA, Pereira SA, Ogrzewalska M, Pauvolid-Corrêa A, Resende PC, Tassinari W de S, et al. Investigation of SARS-CoV-2 infection in dogs and cats of humans diagnosed with COVID-19 in Rio de Janeiro, Brazil. PLoS ONE. 2021;16:e0250853. https://doi.org/10.1371/journal.pone.0250853

Fuentealba NA, Moré G, Bravi ME, Unzaga JM, De Felice L, Salina M, et al. First detection and molecular analysis of SARS-CoV-2 from a naturally infected cat from Argentina. Vet Microbiol. 2021;260:109179. https://doi.org/10.1016/j.vetmic.2021.109179

Li R, Qiao S, Zhang G. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J Infect. 2020;80:469-96. https://doi.org/10.1016/j.jinf.2020.02.013

Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. https://doi.org/10.15252/embj.20105114

Damas J, Hughes G, Keough K, Painter C, Persky N, Corbo M, et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A. 2020;117:22311-22. https://doi.org/10.1073/pnas.2010146117

Rendon-Marín S, Martínez-Gutiérrez M, Whittaker GR, Jaimes JA, Ruiz-Saenz J. SARS CoV-2 spike protein in silico interaction with ACE2 receptors from wild and domestic species. Front Genet. 2021;12:571707. https://doi.org/10.3389/fgene.2021.571707

Bonilla-Aldana K, Ruiz-Sáenz J, Martínez-Gutiérrez M, Tiwari R, Dhama K, Jaimes J, et al. Concerns on the emerging research of SARS-CoV-2 on felines: Could they be significant hosts/reservoirs? J Pure Appl Microbiol. 2020;14(Suppl.1):703-8. https://doi.org/10.22207/JPAM.14.SPL1.04

Leroy EM, Ar Gouilh M, Brugère-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a One-Health strategy to control the COVID-19 pandemic. One Health. 2020;10:100133. https://doi.org/10.1016/j.onehlt.2020.100133

Ministerio de Salud y Protección Social. Cobertura nacional de vacunación antirrábica de perros y gatos por departamento año 2018. Fecha de consulta 20 de junio de 2021. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/coberturas-vacunacion-antirrabica-perros-gatos-2018.zip

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8. https://doi.org/10.1016/j.jare.2020.03.005

Maestre JP, Jarma D, Yu JRF, Siegel JA, Horner SD, Kinney KA. Distribution of SARSCoV-2 RNA signal in a home with COVID-19 positive occupants. Sci Total Environ. 2021;778:146201. https://doi.org/10.1016/j.scitotenv.2021.146201

Shervani Z, Khan I, Siddiqui NY, Khan T, Qazi UY. Risk of SARS-CoV-2 transmission from humans to pets and viceversa. Eur J Med Health Sci. 2021;3:34-8. https://doi.org/10.24018/ejmed.2021.3.1.684

Abdel-Moneim AS, Abdelwhab EM. Evidence for SARS-COV-2 infection of animal hosts. Pathogens. 2020;9:529. https://doi.org/10.3390/pathogens9070529

Barroso-Arévalo S, Sánchez-Morales L, Barasona JA, Rivera B, Sánchez R, Risalde MA, et al. Evaluation of the clinical evolution and transmission of SARS-CoV-2 infection in cats by simulating natural routes of infection. Vet Res Commun. 2022;43:837-52. https://doi.org/10.1007/s11259-022-09908-5

Oxford Coronavirus Government Response Tracker. COVID-19 Tracker Global, América Latina y el Caribe, Colombia. Fecha de consulta: 20 de septiembre de 2021. Disponible en: https://graphics.reuters.com/world-coronavirus-tracker-and-maps/es/countries-and-territories/colombia/

World Health Organization. Diagnostic testing for SARS-CoV-2: Interim guidance. Fecha de consulta: 16 de marzo de 2021. Disponible en:. https://apps.who.int/iris/handle/10665/334254

Afzal A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J Adv Res. 2020;26:149-59. https://doi.org/10.1016/j.jare.2020.08.002

McHugh ML. Lessons in biostatistics interrater reliability: The kappa statistic. Biochem Med (Zagreb). 2012;22:276-82.

Giraldo-Ramírez S, Rendón-Marín S, Jaimes JA, Martínez-Gutiérrez M, Ruiz-Sáenz J. SARS-CoV-2 clinical outcome in domestic and wild cats: A systematic review. Animals. 2021;11:2056. https://doi.org/10.3390/ani11072056

Hulswit R, de Haan C, Bosch B. Coronavirus spike protein and tropism changes. In: Ziebuhr J, editor. Advances in virus research. Washington D. C.: Elsevier Inc.; 2016. p. 94-5. https://doi.org/10.1016/bs.aivir.2016.08.004

Muñoz M, Patiño LH, Ballesteros N, Paniz-Mondolfi A, Ramírez JD. Characterizing SARSCoV-2 genome diversity circulating in South American countries: Signatures of potentially emergent lineages? Int J Infect Dis. 2021;105:329-32. https://doi.org/10.1016/j.ijid.2021.02.073

Buitrago SP, Garzón-Ospina D. Genetic diversity of SARS-CoV-2 in South America: Demographic history and structuration signals. Arch Virol. 2021;166:3357-71. https://doi.org/10.1007/s00705-021-05258-w

Singer J. CoV-GLUE. nsp12 replacement S647I. Fecha de consulta: 23 de octubre de 2021. Disponible en: http://cov-glue.cvr.gla.ac.uk/#/project/replacement/NSP12:S:647:I

Hosie MJ, Epifano I, Herder V, Orton RJ, Stevenson A, Johnson N, et al. Detection of SARSCoV-2 in respiratory samples from cats in the UK associated with human-to-cat transmission. Vet Rec. 2021;188:e247. https://doi.org/10.1002/vetr.247

Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812-27.e19. https://doi.org/10.1016/j.cell.2020.06.043

Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe. 2020;1:e218-25. https://doi.org/10.1016/S2666-5247(20)30089-6

How to Cite
1.
Cabrera A, González-Álvarez D, Gutiérrez LA, Díaz FJ, Forero D, Rodas JD. Natural SARS-CoV- 2 infection in domestic cats and dogs of humans diagnosed with COVID-19 in Valle de Aburrá, Antioquia. biomedica [Internet]. 2022 Oct. 31 [cited 2024 May 18];42(Sp. 2):48-5. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6407

Some similar items:

Published
2022-10-31
Section
Original articles

Altmetric

Funding data

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code