Incidence of metabolic bone disease in neonates under 32 gestational weeks at the Hospital Universitario de Santander in Colombia

Erika Ruiz , Diego Ernesto Piamonte, Deisy Tatiana Gómez, Luis Alfonso Díaz, Luis Alfonso Pérez, .

Keywords: bone diseases, metabolic, infant, premature, alkaline phosphatase, phosphorus, vitamin D

Abstract

Introduction. Metabolic bone disease of premature infants is a rare complication characterized by a lower mineral content in bone tissue.
Objective. To establish the incidence of metabolic bone disease in premature infants and to determine associated risk factors.
Materials and method. We conducted a descriptive prospective cohort study for one year in all newborns under 32 gestational weeks, or 1,500 g, at the Hospital Universitario de Santander to determine the incidence of metabolic bone disease.
We collected demographic data and prenatal histories of the selected patients, and later, we measured serum alkaline phosphatase and serum phosphorus at the third week of birth, having as reference values for diagnosis less than 5.6 mg/dl for the first one and more than 500 UI/L for the second one.
We applied statistical tools for data analysis, such as average proportions, dispersion, distribution and association measures, and binomial regression.
Results. From a total of 58 patients, 7 had a diagnosis of metabolic bone disease, with an incidence of 12%. The weight was reported as an independent variable for the development of the disease, being significant in children under 1,160 g, as well as prolonged parenteral nutrition for more than 24 days. When performing the multivariate analysis, low weight and short time of parenteral nutrition appeared as risk factors; in the same way, maternal age below 22 years is associated with a higher relative risk, even more than a newborn weight inferior to 1,160 g.
Conclusion. Establishing an early intervention in patients with metabolic bone disease enhancing risk factors, such as low weight and prolonged parenteral nutrition, is critical to prevent severe complications.

Downloads

Download data is not yet available.

References

Moreira A, Jacob R, Lavender L, Escaname E. Metabolic bone disease of prematurity. Neoreviews. 2015;16:e631-41. https://doi.org/10.1542/neo.16-11-e631

Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term consequences. Arch Dis Child Fetal Neonatal Ed. 2019;104:F560-6. https://doi.org/10.1136/archdischild-2018-316330

Schulz EV, Wagner CL. History, epidemiology and prevalence of neonatal bone mineral metabolic disorders. Semin Fetal Neonatal Med. 2020;25:101069. https://doi.org/10.1016/j.siny.2019.101069

Abrams SA, Bhatia JJS, Abrams SA, Corkins MR, de Ferranti SD, Golden NH, et al. Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics. 2013;131:e1676-83. https://doi.org/10.1542/peds.2013-0420

Chacham S, Pasi R, Chegondi M, Ahmad N, Mohanty SB. Metabolic bone disease in premature neonates: An unmet challenge. J Clin Res Pediatr Endocrinol. 2020;12:332-9. https://doi.org/10.4274/jcrpe.galenos.2019.2019.0091

Rayannavar A, Calabria AC. Screening for metabolic bone disease of prematurity. Semin Fetal Neonatal Med. 2020;25:101086. https://doi.org/10.1016/j.siny.2020.101086

Krithika MV, Balakrishnan U, Amboiram P, Shaik MSJ, Chandrasekaran A, Ninan B. Early calcium and phosphorus supplementation in VLBW infants to reduce metabolic bone disease of prematurity: A quality improvement initiative. BMJ Open Qual. 2022;11(Suppl.1):e001841. https://doi.org/10.1136/bmjoq-2022-001841

Yan-Mei C, Xin-Zhu L, Rong Z, Xi-Hong L, Xiao-Mei T, Ping-Yang C, et al. Expert consensus on clinical management of metabolic bone disease of prematurity (2021). Zhongguo Dangdai Erke Zazhi. 2021;23:761-72. https://doi.org/10.7499/j.issn.1008-8830.2105152

Fewtrell M, Prentice A, Cole TJ, Lucas A. Effects of growth during infancy and childhood on bone mineralization and turnover in preterm children aged 8-12 years. Acta Paediatr. 2000;89:148-53. https://doi.org/10.1080/080352500750028744

Ávila A, Urisarri A, Fuentes J, Mandiá N, Sucasas A, Couce M. Metabolic bone disease of prematurity: Risk factors and associated short-term outcomes. Nutrients. 2020;12:3786. https://doi.org/10.3390/nu12123786

Wang J, Zhao Q, Chen B, Sun J, Huang J, Meng J, et al. Risk factors for metabolic bone disease of prematurity: A meta-analysis. PLoS One. 2022;17:e0269180. https://doi.org/10.1371/journal.pone.0269180

Montaner R, Fernández C, Calmarza P, Rite S, Oliván M. Risk factors and biochemical markers in metabolic bone disease of premature newborns. Rev Chil Pediatr. 2017;88:487-94. https://doi.org/10.4067/S0370-41062017000400007

Ukarapong S, Venkatarayappa B, Navarrete C, Berkovitz G. Risk factors of metabolic bone disease of prematurity. Early Hum Dev. 2017;112:29-34. https://doi.org/10.1016/j.earlhumdev.2017.06.010

Chen W, Yang C, Chen H, Zhang B. Risk factors analysis and prevention of metabolic bone disease of prematurity. Medicine (Baltimore). 2018;97:e12861. https://doi.org/10.1097/MD.0000000000012861

Orth L, O’Mara K. Impact of early versus late diuretic exposure on metabolic bone disease and growth in premature neonates. J Pediatr Pharmacol Ther. 2018;23:2633. https://doi.org/10.5863/1551-6776-23.1.26

Tan Y, Tsao P, Chou H, Yen T, Chen C. Hypophosphatemia as an early metabolic bone disease marker in extremely low-birth-weight infants after prolonged parenteral nutrition exposure. JPEN J Parenter Enteral Nutr. 2021;45:1268-74. https://doi.org/10.1002/jpen.2010

Eliakim A, Shiff Y, Nemet D, Dolfin T. The effect of neonatal sepsis on bone turnover in verylow birth weight premature infants. J Pediatr Endocrinol Metab. 2003;16:413-8. https://doi.org/10.1515/jpem.2003.16.3.413

How to Cite
1.
Ruiz E, Piamonte DE, Gómez DT, Díaz LA, Pérez LA. Incidence of metabolic bone disease in neonates under 32 gestational weeks at the Hospital Universitario de Santander in Colombia. biomedica [Internet]. 2024 Mar. 31 [cited 2024 May 18];44(1):35-44. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6926
Published
2024-03-31
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code