Leptolegnia chapmanii como alternativa biológica para el control de Aedes aegypti

Manuel E. Rueda, Isabella Tavares , Claudia C. López , Juan García , .

Palabras clave: Aedes, control biológico de vectores, mosquitos vectores, vectores de enfermedades, salud pública

Resumen

Leptolegnia chapmanii es un microorganismo patógeno facultativo de diversas especies de mosquito, entre las que se destacan, por su importancia médica y sanitaria, especies de los géneros Aedes, Culex y Anopheles. El potencial de L. chapmanii como alternativa de control radica en la virulencia, capacidad patógena y grado de especificidad que presenta hacia los estadios larvales de las diferentes especies de mosquito, y por su inocuidad frente a organismos acuáticos no blanco como, por ejemplo, peces y anfibios. Su presencia natural ha sido reportada en Argentina, Brasil, y Estados Unidos, pensándose como posible en otros países dentro del continente americano. La eficacia de L. chapmanii como controlador se ve influenciada por factores externos, como la temperatura, la radiación y el pH, entre otros.
Uno de los objetivos de trabajo del Grupo de Hongos Entomopatógenos del Centro de Estudios Parasitológicos y de Vectores de la Universidad Nacional de La Plata, corresponde al desarrollo de protocolos para la producción, formulación, almacenamiento y aplicación de productos basados en este microorganismo. Con este referente, estamos desarrollando un proyecto con L. chapmanii que se encuentra en la fase inicial, en la que se está trabajando la prueba de concepto a escala de laboratorio. Se espera continuar en el futuro con estudios de eficacia, eficiencia, estabilidad y seguridad ecotoxicológica, a diferentes escalas.

Descargas

La descarga de datos todavía no está disponible.
  • Manuel E. Rueda Laboratorio de Hongos Entomopatógenos y Control Biológico, Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
  • Isabella Tavares Comissão Técnica de Combate ao Aedes spp. no Campus “Luiz de Queiroz”, Laboratório de Controle Microbiano de Insetos, Departamento de Entomología, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, Brasil
  • Claudia C. López Laboratorio de Hongos Entomopatógenos y Control Biológico, Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
  • Juan García Laboratorio de Hongos Entomopatógenos y Control Biológico, Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina; Comisión de Investigaciones Científicas, Buenos Aires, Argentina

Referencias

Beakes GW, Glockling SL, Sekimoto S. The evolutionary phylogeny of the oomycete “fungi”. Protoplasma. 2012;249:3-19. https://doi.org/10.1007/s00709-011-0269-2

Levésque CA. Fifty years of oomycetes - from consolidation to evolutionary and genomic exploration. Fungal Divers. 2011;50:35-46. https://doi.org/10.1007/s13225-011-0128-7

Rossman AY, Palm ME. Why are Phytophthora and other Oomycota not true fungi? Outlooks on Peste Management. 2006;17:217-9. https://doi.org/10.1564/17oct08

Dick MW, Vick MC, Gibbings JG, Hedderson TA, López CC. 18S rDNA for species of Leptolegnia and other Peronosporomycetes: Justification for the subclass taxa Saprolegniomycetidae and Peronosporomycetidae and division of Saprolegniacea sensu lato into the Leptolegniacea and Saprolegniacea. Mycol Res. 1999;103:1119-25.

Dick MW. Straminipilous fungi: Systematics of the Peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. Dordrecht, the Netherlands: Kluwer Academic Publisher; 2001. p. 289.

Rocha SC, López CC, Marano AV, de Souza SI, Rueda ME, Pires CL. New phylogenetic insights into Saprolegniales (Oomycota, Straminipila) based upon studies of specimens isolated from Brazil and Argentina. Mycol Progress. 2018;17:691-700. https://doi.org/10.1007/s11557-018-1381-x

McCarthy CG, Fitzpatrick DA. Phylogenomic reconstruction of the oomycete phylogeny derived from 37 genomes. mSphere.asr.org. 2007;2:e00095-17. https://doi.org/10.1128/mSphere.00095-17

Kamoun S. Molecular genetics of pathogenic oomycetes. Eukaryot Cell. 2003;2:191-9. https://doi.org/10.1128/EC.2.2.191-199.2003

Diéguez J, García MA, Cerenius L, Kozúbiková E, Ballesteros I, Windels C, et al. Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (oomycetes). Fungal Genet Biol. 2009;46:365-76. https://doi.org/10.1016/j.fgb.2009.02.004

Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P. New insights into animal pathogenic oomycetes. Trends Microbiol. 2008;16:13-9. https://doi.org/10.1016/j.tim.2007.10.013

Marano AV, Gleason FH, Rocha SC, Pires-Zottarelli CL, de Souza JI. Crown oomycetes have evolved as effective plant and animal parasites. En: Dighton J, White JF, editores. The fungal community. Boca Ratón: CRC Press; 2002. p. 257-72.

Urban MC, Lewis LA, Fučíková K, Cordone A. Population of origin and environment interact to determine oomycete infections in spotted salamander populations. Oikos. 2015;124:274-84. https://doi.org/10.1111/oik.01598

Sparrow FK. The present status of classification in biflagellate fungi. In: Gareth-Jones EB, editors. Recent advances in aquatic mycology. London: Elek Science; 1976. p. 213-22.

Dick MW. Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman D, editors. Handbook of Protoctista. Boston: Jones & Bartlet; 1990. p. 661-85.

Dick MW. Sexual reproduction in the Peronosporomycetes (chromistan fungi). Can J Bot. 1995;73:712-24.

Petersen AB, Rosendahl S. Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). Mycol Res. 2000;104:1295-303.

Margulis L, Chapman MJ. Kingdom Fungi. In: Margulis L, Chapman D, editors. Kingdoms and Domains. Fourth edition. London: Editorial Academic Press; 2009. p. 379-409.

Adl SM, Leander BS, Simpson AG, Archibald JM, Anderson OR, Bass D, et al. Diversity, nomenclature, and taxonomy of protists. Syst Biol. 2007;56:684-9. https://doi.org/10.1080/10635150701494127

Pelizza SA, López CC, Becnel JJ, Humber RA, García JJ. Further research on the production, longevity and infectivity of the zoospores of Leptolegnia chapmanii Seymour (Oomycota: Peronosporomycetes). J Invertebr Pathol. 2008;98:314-9. https://doi.org/10.1016/j.jip.2008.04.006

Johnson TW Jr, Seymour RL, Padget DE. Biology and systematic of the Saprolegniaceae. Fecha de consulta: 8 de junio del 2018. Disponible en: http://dl.uncw.edu/digilib/biology/fungi/taxonomy%20and%20systematics/padgett%20book

Pelizza SA, Scorsetti AC, López CC, García JJ. Production of oogonia and oospores of Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) in Aedes aegypti (L.) larvae at different temperatures. Mycopathologia. 2010;169:71-4. https://doi.org/10.1007/s11046-009-9224-6

Zattau WC, McInnis T. Life cycle and mode of infection of Leptolegnia chapmanii (Oomycetes) parasitizing Aedes aegypti. J Invertebr Pathol. 1987;50:134-45. https://doi.org/10.1016/0022-2011(87)90113-3

Lord JC, Fukuda T. An ultrastructural study of the invasion of Culex quinquefasciatus larvae by Leptolegnia chapmanii (Oomycetes: Saprolegniales). Mycopathologia. 1988;104:67-74

McInnis T, Zattau WC. Experimental infection of mosquito larvae by a species of the aquatic fungus Leptolegnia. J Invertebr Pathol. 1982;39:98-104. https://doi.org/10.1016/0022-2011(72)90164-4

Pelizza SA, López CC, Becnel JJ, Bisaro V, García JJ. Biotic and abiotic factors affecting Leptolegnia chapmanii infection in Aedes aegypti. J Am Mosq Control Assoc. 2007;23:177-81. https://doi.org/10.2987/8756-971X(2007)23[177:BAAFAL]2.0.CO;2

Seymour RL. Leptolegnia chapmanii, an Oomycete pathogen of mosquito larvae. Mycologia. 1984;76:670-4. https://doi.org/10.2307/3793224

Muehleisen DP. The effectiveness of Lagenidium giganteum as a biological control agent of Culex pipiens quinquefaciatus (thesis). Clemson, SC: Clemson University; 1977.

Humber RA, Hansen KS, Wheeler MM. ARSEF: ARS Collection of Entomopathogenic Fungal Cultures. Catalogue of Species. Fecha de consulta: 5 de junio de 2018. Disponible en: http://www.ars.usda.gov/Main/docs.hrm?docid=12125&page=2

López CC, Steciow MM, García JJ. Registro más austral del hongo Leptolegnia chapmanii (Oomycetes: Saprolegniales) como patógeno de larvas de mosquito (Diptera: Culicidae). Rev Iberoam Micol. 1999;16:143-5.

Montalva C, dos Santos K, Collier K, Rocha LF, Fernandes EK, Castrillo LA, et al. First report of the Leptolegnia chapmanii (Peronosporomycetes: Saproleniales) affecting mosquitoes in central Brazil. J Invertebr Pathol. 2016;136:109-16. https://doi.org/10.1016/j.jip.2016.03.012

McInnis T, Schimmel L, Noblet R. Host range studies with the fungus Leptolegnia, a parasite of mosquito larvae (Diptera: Culicidae). J Med Entomol. 1985;22:226-7.

Nnakumusana ES. Susceptibility of mosquito larvae to Leptolegnia sp. Indian J Med Res. 1986;84:586-93.

López CC, Scorsetti AC, Marti GA, García JJ. Host range and specificity of an Argentinean isolate of the aquatic fungus Leptolegnia chapmanii (Oomycetes: Saprolegniales), a pathogen of mosquito larvae (Diptera: Culicidae). Mycopathologia. 2004;158:311-5.

Nnakumusana ES. Histopathological studies on the progress of infection of Leptolegnia sp (SC-1) in Anopheles gambiae larvae exposed to zoospores in the laboratory. Curr Sci. 1986;55:633-6.

Nnakumusana ES. An assessment of the mosquito-pathogenic fungus Leptolegnia (SC-1) as blackfly (Diptera: Simuliidae) pathogen. Curr Sci. 1986;55:581-2.

Adler PH, McCreadie JW. Black Flies (Simuliidae). In: Muler GR, Durden LA, editors. Medical and veterinary entomology. Third edition. London: Academic Press; 2019. p. 237-59.

Pelizza SA, Scorsetti AC, Bisaro V, López CC, García JJ. Individual and combined effects of Bacillus thuringiensis var. israelensis, temephos and Leptolegnia chapmanii on the larval mortality of Aedes aegypti. Biocontrol. 2010;55:647-56. https://doi.org/10.1007/s10526-010-9281-2

Vontas J, Moore S, Kleinschmidt I, Ranson H, Lindsay S, Lengeler C, et al. Framework for rapid assessment and adoption of new vector control tools. Trends Parasitol. 2014;30:191-204. https://doi.org/10.1016/j.pt.2014.02.005

Wilson A, Boelaert M, Kleinschmidt I, Pinder M, Scott TW, Tunsing LS, et al. Evidence based vector control? Improving the quality of vector control trials. Trends Parasitol. 2015;31:380-90. https://doi.org/10.1016/j.pt.2015.04.015

Rueda ME, López CC, García JJ. Persistence and pathogenicity of a native isolate of Leptolegnia chapmanii against Aedes aegypti larvae in different anthropic environments. Biocontrol Sci Techn. 2015;25:238-43. https://doi.org/10.1080/09583157.2014.967177

Pelizza SA, Cabello MN, Tranchida MC, Scorsetti AC, Bisaro V. Screening for a culture medium yielding optimal colony growth, zoospore yield and infectivity of different isolates of Leptolegnia chapmanii. Ann Microbiol. 2011;61:991-7. https://doi.org/10.1007/s13213-011-0232-7

Rueda ME, Manfrino RG, Gutiérrez A, López CC, García JJ. Development of the mosquito pathogen Leptolegnia chapmanii (Straminipila: Peronosporomycetes) on an inexpensive culture medium based on sunflower seed. Biocontrol Sci Techn. 2016;26:435-9. https://doi.org/10.1080/09583157.2015.1118616

Dom NC, Madzlan MF, Hasnan SN, Misran N. Water quality characteristics of dengue vectors breeding containers. Int J Mosq Res. 2006;3:25-9.

Pelizza SA, López CC, Becnel JJ, Bisaro V, García JJ. Effects of temperature, pH and salinity on the infection of Leptolegnia chapmanii Seymour (Peronosporomycetes) in mosquito larvae. J Invertebr Pathol. 2007;96:133-7. https://doi.org/10.1016/j.jip.2007.04.005

Pelizza SA, López CC, Macía A, Bisaro V, García JJ. Efecto de la calidad del agua de criaderos de mosquitos (Diptera: Culicidae) sobre la patogenicidad e infectividad de las zoosporas del hongo Leptolegnia chapmanii (Straminipila: Peronosporomycetes). Rev Biol Trop. 2009;57:371-80.

Rueda ME, López CC, García JJ, Fernandes EKK, Marreto RN, Luz C. Effect of ultraviolet-A radiation on the production of Leptolegnia chapmanii (Saprolegniales: Saprolegniaceae) zoospores on dead Aedes aegypti (Diptera: Culicidae) larvae and their larvicidal activity. J Invertebr Pathol. 2015;130:133-5. https://doi.org/10.1016/j.jip.2015.08.002

Vendan SE. Current scenario of biopesticides and eco-friendly insect pest management in India. South Indian J Biol Sci. 2016;2:268-71.

Damalas CA, Koutroubas SD. Current status and recent developments in biopesticide use. Agriculture. 2018;8. https://doi.org/10.3390/agriculture8010013

Ruiu L. Insect pathogenic bacteria in integrated pest management. Insects. 2015;6:352-7. https://doi.org/10.3390/insects6020352

Evans HC, Elliot SL, Barreto RW. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas. Mem Inst Oswaldo Cruz. 2018;113:206-14. https://doi.org/10.1590/0074-02760170369

Mendoza L, Vilela R. The mammalian pathogenic oomycetes. Curr Fungal Infect Rep. 2013;7:198-208. https://doi.org/10.1007/s12281-013-0144-z

Vilela R, Taylor JW, Walker ED, Mendoza L. Lagenidium giganteum pathogenicity in mammals. Emerg Infect Dis. 2015;21:290-7. https://doi.org/10.3201/eid2102.141091

Spies CFJ, Grooters AM, Lévesque CA, Rintoul TL, Redhead SA, Glocking SL, et al. Molecular phylogeny and taxonomy of Lagenidium-like oomycetes pathogenic to mammals. Fungal Biol. 2016;120:931-47. https://doi.org/10.1016/j.funbio.2016.05.005

Cómo citar
Rueda, M. E., Tavares , I., López , C. C., & García , J. (2019). Leptolegnia chapmanii como alternativa biológica para el control de Aedes aegypti. Biomédica, 39(4), 798-810. https://doi.org/10.7705/biomedica.4598

Más sobre este tema

Publicado
2019-12-01
Sección
Revisión de tema