Estudio de las variantes alélicas CYP2C9*2 y CYP2C9*3 en muestras de población mestiza peruana

Ángel Tito Alvarado, Ana María Muñoz, Berta Loja, Jessica Michiko Miyasato, Jorge Antonio García, Roberto Andrés Cerro, Luis Abel Quiñones, Nelson Miguel Varela, .

Palabras clave: citocromo P-450 CYP2C9, genotipo, farmacogenética, Perú

Resumen

Introducción. El citocromo CYP2C9 metaboliza, aproximadamente, el 15 % de los fármacos prescritos. Su gen presenta alelos cuyas frecuencias difieren entre grupos étnicos y poblaciones. Los alelos CYP2C9*2 y CYP2C9*3 dan cuenta de una enzima con actividad disminuida cuya frecuencia no ha sido determinada en la población mestiza peruana.
Objetivo. Caracterizar la frecuencia de las variantes *2 (rs1799853) y *3 (rs1057910) del gen CYP2C9 en muestras de población mestiza peruana provenientes de Lima, Tacna y Junín.
Materiales y métodos. Se hizo un estudio descriptivo, observacional y prospectivo, con muestreo no probabilístico, por conveniencia e incidental. Se incluyeron 218 sujetos según los criterios de inclusión y exclusión; todos los participantes otorgaron su consentimiento informado. El ADN genómico se obtuvo mediante hisopado de mucosa oral, y la detección de los genotipos para los alelos CYP2C9*2 y CYP2C9*3 se hizo mediante reacción en cadena de la polimerasa (PCR) en tiempo real, utilizando sondas TaqMan™.
Resultados. Las variantes de CYP2C9*2 y CYP2C9*3 están presentes en la población mestiza peruana con frecuencias de 0,046 y 0,062, respectivamente. El análisis de las frecuencias genotípicas observadas permitió predecir que la frecuencia de fenotipos metabolismo intermedio sería del 15,13 % (CYP2C9*1/*2: 5,96 %; CYP2C9*1/*3: 9,17 %), y la de fenotipos de metabolismo lento, del 3,22 % (CYP2C9*2/*2: 1,38 %; CYP2C9*3/*3: 1,38 %; CYP2C9*2/*3: 0,46 %).
Conclusiones. Se lograron determinar las frecuencias genotípicas y alélicas para las variantes *2 y *3 del gen CYP2C9 en una muestra no probabilística de población mestiza peruana.

Descargas

La descarga de datos todavía no está disponible.
  • Ángel Tito Alvarado Departamento de Biología y Química, Facultad de Ingeniería, Universidad San Ignacio de Loyola (USIL), Lima, Perú https://orcid.org/0000-0001-8694-8924
  • Ana María Muñoz Departamento de Biología y Química, Facultad de Ingeniería, Universidad San Ignacio de Loyola (USIL), Lima, Perú
  • Berta Loja Departamento de Biología y Química, Facultad de Ingeniería, Universidad San Ignacio de Loyola (USIL), Lima, Perú
  • Jessica Michiko Miyasato Clínica Médica Master Medic ERS, Lima, Perú https://orcid.org/0000-0003-2422-0617
  • Jorge Antonio García Facultad de Farmacia y Bioquímica, Universidad Nacional San Luis Gonzaga, Ica, Perú
  • Roberto Andrés Cerro Laboratorio de Carcinogénesis Química y Farmacogenética, Departamento de Oncología Básico-Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
  • Luis Abel Quiñones Laboratorio de Carcinogénesis Química y Farmacogenética, Departamento de Oncología Básico-Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
  • Nelson Miguel Varela Laboratorio de Carcinogénesis Química y Farmacogenética, Departamento de Oncología Básico-Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile

Citas

Miranda C, Roco A, Garay J, Squicciarini V, Tamayo E, Agúndez J, et al. Determinación del polimorfismo de CYP2C9*2 y su relación con la farmacocinética de acenocumarol en voluntarios sanos. Rev Chil Cardiol. 2011;30:218-24. https://doi.org/10.4067/S0718-85602011000300005

Cotuá-Urzola J, Morales-Ortiz A, Delgado-Niño M, Muñoz-Jáuregui A, Quiñones-Sepúlveda L, Alvarado-Yarasca A, et al. Determinación del nivel de dosis del ácido valproico e influencia de los fármacos inductores y no inductores enzimáticos en pacientes voluntarios de la ciudad de Mérida, Venezuela. Horiz Med. 2017;17:29-33. https://doi.org/10.24265/horizmed.2017.v17n3.05

Ortiz L, Tabak R. Farmacogenómica en la práctica clínica. Rev Med Clin Condes. 2012;23:616-20. https://doi.org/10.1016/S0716-8640(12)70356-5

Céspedes-Garro C, Fricke-Galindo I, Naranjo M, Rodrigues-Soares F, Fariñas H, de Andrés F, et al. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin. Drug Metab. Toxicol. 2015;11:1893-905. https://doi.org/10.1517/17425255.2015.1111871

Saldaña-Cruz A, Sánchez-Corona J, Márquez-de Santiago D, García-Zapién A, Flores-Martínez S. Farmacogenética y metabolismo de fármacos antiepilépticos: implicación de variantes genéticas en citocromos P450. Rev Neurol. 2013;56:471-9.

Mukai Y, Narita M, Akiyama E, Ohashi K, Horiuchi Y, Kato Y, et al. Co-administration of fluvastatin and CYP3A4 and cyp2c8 inhibitors may increase the exposure to fluvastatin in carriers of CYP2C9 genetic variants. Biol Pharm Bull. 2017;40:1078-85. https://doi.org/10.1248/bpb.b17-00150

Balestrini S, Sisodiya S. Pharmacogenomics in epilepsy. Neurosci Lett. 2018;667:27-39. https://doi.org/10.1016/j.neulet.2017.01.014

Quiñones L, Roco A, Cayún J, Escalante P, Miranda C, Varela N, et al. Farmacogenómica como herramienta fundamental para la medicina personalizada: aplicaciones en la práctica clínica. Rev Med Chile. 2017;145:483-500. https://doi.org/10.4067/S0034-98872017000400009

Caudle K, Rettie A, Whirl-Carrillo M, Smith L, Mintzer S, Lee M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96:542-8. https://doi.org/10.1038/clpt.2014

Grover S, Gourie-Devi M, Baghel R, Sharma S, Bala K, Gupta M, et al. Genetic profile of patients with epilepsy on first-line antiepileptic drugs and potential directions for personalized treatment. Pharmacogenomics. 2010;11:927-41. https://doi.org/10.2217/pgs.10.62

Claudio-Campos K, Labastida A, Ramos A, Gaedigk A, Renta-Torres J, Padilla D, et al. Warfarin anticoagulation therapy in Caribbean Hispanics of Puerto Rico: A candidate gene association study. Front Pharmacol. 2017;8:1-17. https://doi.org/10.3389/fphar.2017.00347

Fricke-Galindo I, Jung-Cook H, Llerena A, López-López M. Farmacogenética de reacciones adversas a fármacos antiepilépticos. Rev Neurol. 2018;33:165-76. https://doi.org/10.1016/j.nrl.2015.03.005

Depondt C, Godard P, Espel RS, Da Cruz AL, Lienard P, Pandolfo M. A candidate gene study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 variants with phenytoin toxicity. Eur J Neurol. 2011;18:1159-64. https://doi.org/10.1111/j.1468-1331.2011.03361.x

Dorado P, López-Torres E, Peñas-Lledó EM, Martínez-Antón J, Llerena A. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: Influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J. 2013;13:359-61. https://doi.org/10.1038/tpj.2012.19

Babu K, Ramesh V, Samidorai A, Charles C. Cytochrome P450 2C9 gene polymorphism in phenytoin induced gingival enlargement: A case report. J Pharm Bioallied Sci. 2013;5:237-9. https://doi.org/10.4103/ 0975-7406.116828

Park JJ, Park KW, Kang J, Jeon KH, Kang SH, Ahn HS, et al. Genetic determinants of clopidogrel responsiveness in Koreans treated with drug-eluting stents. Int J Cardiol. 2013:163:79-86. https://doi.org/10.1016/j.ijcard.2012.09.075

García-Lagunar M, Consuegra-Sánchez L, Conesa- Zamora P, Ruiz-Cosano J, Soria-Arcos F, García de Guadiana L, et al. Genotyping of six clopidogrel-metabolizing enzyme polymorphisms has a minor role in the assessment of platelet reactivity in patients with acute coronary syndrome. Anatol J Cardiol. 2017;17:303-12. https://doi.org/10.14744/AnatolJCardiol.2016.7390

Wang Y, Yi XD, Lu BL. Influence of CYP2C9 and COX-2 genetic polymorphisms on clinical efficacy of non-steroidal anti-inflammatory drugs in treatment of ankylosing spondylitis. Med Sci Monit. 2017;23:1775-82. https://doi.org/10.12659/MSM.900271

Homburger J, Moreno-Estrada A, Gignoux C, Nelson D, Sánchez E, Ortiz-Tello P, et al. Genomic insights into the ancestry and demographic history of South America. PLoS Genet. 2015;11:1-26. https://doi.org/10.1371/journal.pgen.1005602

National Geographic. Reference Populations-Geno 2.0 Next Generation-2018 Fecha de consulta: 6 de mayo de 2018. Disponible en: https://genographic.nationalgeographic.com/reference-populations-next-gen/

Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, Quinto-Sánchez M, Jaramillo C, Arias W, et al. Admixture in Latin America: Geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet. 2014;10:1-13. https://doi.org/10.1371/journal.pgen.1004572

Moyano L. Epidemiología de la epilepsia en el Perú: Neurocisticercosis como causa de epilepsia secundaria en la región norte del Perú. Tesis. Human health and pathology. Université de Limoges; 2016. Español (NNT: 2016LIMO0135). https://tel.archives-ouvertes.fr/tel-01544029

Daly A, Rettie A, Fowler D, Miners J. Review pharmacogenomics of CYP2C9: Functional and clinical considerations. J Pers Med. 2018;8:1-31. https://doi.org/10.3390/jpm8010001

Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6 and CYP2C19

genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93:402-8. https://doi.org/10.1038/clpt.2013.2

Nakai K, Habano W, Nakai K, Fukushima N, Suwabe A, Moriya S, et al. Ethnic differences in CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) genotypes in Japanese and Israeli populations. Life Sci. 2005;78:107-11. https://doi.org/10.1016/j.lfs.2005.04.049

Asociación Médica Mundial. Declaración de Helsinki. Principios éticos para las investigaciones médicas en seres humanos, 2017.Fecha de consulta: 22 de marzo de 2018. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-ammprincipios-eticos-para-las investigaciones-medicas-en-seres-humanos/

Bravo-Villalta HV, Yamamoto K, Nakamura K, Bayá A, Okada Y, Horiuchi R. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: An investigative and comparative study. Eur J Clin Pharmacol. 2005;61:179-84. https://doi.org/10.1007/ s00228-004-0890-5

Roco A, Quiñones L, Agúndez JA, García-Martín E, Squicciarini V, Miranda C, et al. Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: Comparison with Caucasian and Asian populations. Front Genet. 2012;3:1-9. https://doi.org/10.3 389/fgene.2012.00229

Soares RA, Santos PC, Machado-Coelho GL, Marques do Nascimento R, Mill JG, Krieger JE, et al. CYP2C9 and VKORC1 polymorphisms are differently distributed in the Brazilian population according to self-declared ethnicity or genetic ancestry. Genet Test Mol Biomarkers. 2012;16:957-63. https://doi.org/10.1089/gtmb.2012.0019

Sánchez-Díaz P, Estany-Gestal A, Aguirre C, Blanco A, Carracedo A, Ibáñez L, et al. Prevalence of CYP2C9 polymorphisms in the south of Europe. Pharmacogenomics J. 2009;9:306-10. https://doi.org/10.1038/tpj.2009.16

Vicente J, Gonzáles-Andrade F, Soriano A, Fanlo A, Martínez-Jarreta B, Sinués B. Genetic polymorphisms of CYP2C8, CYP2C9 and CYP2C19 in Ecuadorian Mestizo and Spaniard populations: A comparative study. Mol Biol Rep. 2014;41:1267-72. https://doi.org/10.1007/s11033-013-2971-y

Cómo citar
Alvarado, Ángel T., Muñoz, A. M., Loja, B., Miyasato, J. M., García, J. A., Cerro, R. A., Quiñones, L. A., & Varela, N. M. (2019). Estudio de las variantes alélicas CYP2C9*2 y CYP2C9*3 en muestras de población mestiza peruana. Biomédica, 39(3), 601-610. https://doi.org/10.7705/biomedica.4636

Más sobre este tema

Publicado
2019-09-01
Sección
Comunicación breve