Spatial distribution of potential and positive Aedes aegypti breeding sites

Daniel Elías Cuartas, Genny Martínez, Diana María Caicedo, Jhonny Garcés, Yoseth Ariza-Araujo, Miguel Peña, Fabián Mendéz, .

Keywords: Aedes aegypti, dengue, Zika, Chikungunya, spatial analysis

Abstract

Introduction: The spatial distribution of Aedes aegypti is heterogeneous, and the interaction between positive and potential breeding sites located both inside and outside homes is one of the most difficult aspects to characterize in vector control programs.
Objective: To describe the spatial relationship between potential and positive breeding sites of A. aegypti inside and outside homes in Cali, Colombia.
Materials and methods: We conducted an entomological survey to collect data from both indoor and outdoor breeding sites. The exploratory analysis of spatial data included location, spatial trends, local spatial autocorrelation, spatial continuity and spatial correlation of positive and potential breeding sites according to habitat.
Results: Spatial trends were identified, as well as clusters of potential and positive breeding sites outdoors using local spatial autocorrelation analysis. A positive correlation was found between potential and positive breeding sites, and a negative correlation existed between indoor and outdoor sites.
Conclusions: The spatial relationship between positive and potential A. aegypti breeding sites both indoors and outdoors is dynamic and highly sensitive to the characteristics of each territory. Knowing how positive and potential breeding sites are distributed contributes to the prioritization of resources and actions in vector control programs.

Downloads

Download data is not yet available.
  • Daniel Elías Cuartas Grupo de Epidemiología y Salud Poblacional, Universidad del Valle, Cali, Colombia http://orcid.org/0000-0002-5677-4326
  • Genny Martínez Secretaría de Salud Pública Municipal, Cali, Colombia
  • Diana María Caicedo Grupo de Epidemiología y Salud Poblacional, Universidad del Valle, Cali, Colombia
  • Jhonny Garcés Grupo de Epidemiología y Salud Poblacional, Universidad del Valle, Cali, Colombia
  • Yoseth Ariza-Araujo Grupo de Investigación Biomédica, Universidad Icesi, Cali, Colombia
  • Miguel Peña Grupo de Saneamiento Ambiental, Instituto CINARA, Universidad del Valle, Cali, Colombia
  • Fabián Mendéz Grupo de Epidemiología y Salud Poblacional, Universidad del Valle, Cali, Colombia

References

Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A. Dengue vector-control services: How do they work? A systematic literature review and country case studies. Trans R Soc Trop Med Hyg. 2010;104:379-86. https://doi.org/10.1016/j.trstmh.2009.07.027

Fauci AS, Morens DM. Zika virus in the Americas—yet another arbovirus threat. N Engl J Med. 2016;374:601-4. https://doi.org/10.1056/NEJMp1600297

Pialoux G, Gaüzère B-A, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007;7:319-27. https://doi.org/10.1016/S1473-3099(07) 70107-X

Cafferata ML, Bardach A, Rey-Ares L, Alcaraz A, Cormick G, Gibbons L, et al. Dengue epidemiology and burden of disease in Latin America and the Caribbean: A systematic review of the literature and meta-analysis. Value Health Reg Issues. 2013;2:347-56. https://doi.org/10.1016/j.vhri. 2013.10.002

McLennan-Smith TA, Mercer GN. Complex behaviour in a dengue model with a seasonally varying vector population. Math Biosci. 2014;248:22-30. https://doi.org/10.1016/j.mbs. 2013.11.003

Aguiar M, Kooi BW, Rocha F, Ghaffari P, Stollenwerk N. How much complexity is needed to describe the fluctuations observed in dengue hemorrhagic fever incidence data? Ecological Complexity. 2013;16:31-40. https://doi.org/10. 1016/j.ecocom.2012.09.001

Epstein PR. Chikungunya fever resurgence and global warming. Am J Trop Med Hyg. 2007;76:403-4.

Organización Panamericana de la Salud, Organización Mundial de la Salud. Dengue: guías para el diagnóstico, tratamiento, prevención y control. La Paz, Bolivia: OPS/OMS; 2010.

González R, Gamboa F, Perafán O, Suárez MF, Lerma JM. Experiencia de un análisis entomológico de criaderos de Aedes aegypti y Culex quinquefasciatus en Cali, Colombia. Revista Colombiana de Entomología. 2007;33:9.

Alcaldía de Santiago de Cali. Cali en cifras 2011. Cali: Alcaldía de Santiago de Cali; 2012. p. 161.

Buzai G. Sistemas de información geográfica en geografía de la salud. En: Pickenhayn J, editor. Salud y enfermedad en geografía. Buenos Aires: Lugar Editores; 2008. p. 111-34.

Palaniyandi M. The environmental aspects of dengue and chikungunya outbreaks in India: GIS for epidemic control. International Journal of Mosquito Research. 2014;1:38-44.

Deakin RE, Birda SC, Grenfellb RI. The Centroid? Where would you like it to be? Cartography. 2002;31:153-67. https://doi.org/10.1080/00690805.2002.9714213

Vine MF, Degnan D, Hanchette C. Geographic information systems: Their use in environmental epidemiologic research. Environ Health Perspect. 1997;105:598-605.

Muir LE, Kay BH. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg. 1998;58:277-82. https://doi.org/10. 4269/ajtmh.1998.58.277

Ministerio da Saúde do Brazil, Fundaçao Oswaldo Cruz. Introduçao à estadistística espacial para a saúde pública. Brasilia: Ministerio da Saúde; 2007.

Cuartas D, Ariza Y, Pachajoa H, Méndez F. Analysis of the spatial and temporal distribution of birth defects between 2004-2008 at a third-level hospital in Cali, Colombia. Colombia Médica. 2011;42:9-16.

Coro C. Análisis estadístico de datos geográficos en geo-marketing: el programa GeoDa. Revista Distribución y Consumo. 2006;131:34-45.

AnselinL, Syabri I, Kho Y. GeoDa: An introduction to spatial data analysis. Geographical analysis. 2006;38:5-22. https://doi.org/10.1111/j.0016-7363.2005.00671.x

Anselin L. Local Indicators of Spatial Association-LISA. Geographical Analysis. 1995;27:93-115. https://doi.org/10. 1111/j.1538-4632.1995.tb00338.x

Isaaks EH, Srivastava RM. An introduction to applied geo-statistics. Oxford: Oxford University Press; 1989. p. 561.

Tobler WR. A computer movie simulating urban growth in the Detroit region. Economic Geographic. 1970;46:234-40.

Gallardo A, Maestre F. Métodos geoestadísticos para el análisis de datos ecológicos espacialmente explícitos. En: Maestre F, Alcántara A, Bonet A, editores. Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Madrid: Universidad Rey Juan Carlos; 2008. p. 216-72.

Goovaerts P. Ordinary cokriging revisited. Mathematical Geology. 1998;30:21-42. https://doi.org/10.1023/A:1021757 104135

Knotters M, Brus DJ, Oude Vosjaar JH. A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma. 1995;67:227-46. https://doi.org/10. 1016/0016-7061(95)00011-C

Childs C. Interpolation surfaces in arcgis spatial analyst. ArcUser. 2004:32-5.

Dávila JR, González J, Ocete R, López R. Descripción estadística de la distribución espacial de los huevos del mosquito verde Jacobiasca lybica (Bergenin & Zanon) (Homoptera: Cicadellidae) en viñedo: modelización y mapeo. Bol SanVeg Plagas. 2002;28:87-95.

Nyamah MA, Sulaiman S, Omar B. Categorization of potential breeding sites of dengue vectors in Johor, Malaysia. Trop Biomed. 2010;27:33-40.

Focks DA, Daniels E, Haile DG, Keesling JE. A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg. 1995;53: 489-506. https://doi.org/10.4269/ajtmh.1995.53.489

Ocampo CB, Giraldo-Calderón GI, Pérez M, Morales CA. Evaluación del triflumurón y la mezcla de Bacillus thuringiensis más Bacillus sphaericus para el control de las formas inmaduras de Aedes aegypti y Culex quinquefasciatus en sumideros en Cali, Colombia. Biomédica. 2008;28:224-33. https://doi.org/10.7705/biomedica.v28i2.93

Barrera R. Recomendaciones para la vigilancia de Aedes aegypti. Biomédica. 2016;36:454-62. https://doi.org/10.7705/ biomedica.v36i3.2892

Fotheringham S, Charlton ME, Brunsdon C. Geo-graphically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ Plan A.1998;30:1905-27.

Nakaya T, Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted Poisson regression for disease association mapping. Stat Med. 2005;24:2695-717.

Alcalá L, Quintero J, González-Uribe C, Brochero H. Productividad de Aedes aegypti (L.) (Diptera: Culicidae) en viviendas y espacios públicos en una ciudad endémica para dengue en Colombia. Biomédica. 2015;35:258-68. http://dx. doi.org/10.7705/biomedica.v35i2.2567

How to Cite
1.
Cuartas DE, Martínez G, Caicedo DM, Garcés J, Ariza-Araujo Y, Peña M, et al. Spatial distribution of potential and positive Aedes aegypti breeding sites. biomedica [Internet]. 2017 Mar. 29 [cited 2024 May 18];37(Sup. 2):59-66. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3471

Some similar items:

Published
2017-03-29

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code