Detection and expression of superantigens and resistance in isolates from women carriers of Staphylococcus aureus who take care of and feed children

Yina Marcela Guaca-González, Gladys Fernanda Flórez-Restrepo, José Ignacio Moncayo-Ortíz, Jorge Santacruz-Ibarra, Adalucy Álvarez-Aldana, .

Keywords: Staphylococcus aureus, enterotoxins, drug resistance, microbial, superantigens, genotype, genetic variation

Abstract

Introduction: Staphylococcus aureus colonizes mucous membranes and skin causing severe infections in humans and animals. It is important to determine carrier status of enterotoxigenic strains of this microorganism in food handlers to prevent food poisoning.
Objective: To establish the correlations among classic enterotoxigenic genes, tsst-1 gene, the production of toxins in cultures and antimicrobial resistance in S. aureus isolates from women who handle the food, feed and take care of children in their communities.
Materials and methods: Nasal swab and finger samples were cultured and S. aureus was identified using routine methods and automated systems. DNA extraction was done by the CTAB modified method, and superantigen detection by simple and multiplex PCR, while toxins were detected using commercial kits.
Results: We found that 22.0% of subjects were S. aureus carriers: 17.0% corresponded to nose samples, 5.0% to hands and 6.7% to both nose and hands. The prevalence of superantigens was 73.7%. The most frequent genotype was sea-tsst-1 with 10%. Resistance to one antibiotic was 74.7%, and to four antibiotics, 3.2%; 93.7% of the isolates were betalactamase-positive. Classical genes and tsst-1 gene were detected by PCR in 48.4% of samples and toxins in supernatant were detected in 42.1% of them with 95.7% of correlation.The highest correlations were established for TSST-1 and SEA
with 100% and 94.4%, respectively. The correlation of tsst-1 gene with toxin production and resistance was 100%. All isolates with genotype sea-tsst-1 were toxin-positive and resistant.
Conclusion: The rate of toxigenic and resistant S. aureus isolates from women in charge of feeding and taking care of children was higher than 70%, which demonstrates its high virulence. This requires the strict application of hygienic and sanitary regulations in order to avoid the risk of food poisoning.

Downloads

Download data is not yet available.
  • Yina Marcela Guaca-González Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
  • Gladys Fernanda Flórez-Restrepo Centro de Biología Molecular y Biotecnología, Universidad Tecnológica de Pereira, Pereira, Colombia
  • José Ignacio Moncayo-Ortíz Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
  • Jorge Santacruz-Ibarra Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
  • Adalucy Álvarez-Aldana Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia

References

Chen CJ, Want SC, Chang HY, Huang YC. Longitudinal analysis of methicillin-resistant and methicillin-susceptible Staphylococcus aureus carriage in healthy adolescents. J Clin Microbiol. 2013;51:2508-14. https://doi.org/10.1128/JCM.00572-13

Larkin EA, Carman RJ, Krakauer T, Stiles BG. Staphylococcus aureus: The toxic presence of a pathogen extraordinaire. Curr Med Chem. 2009;16:4003-19. https://doi.org/10.2174/092986709789352321

Bronner S, Monteil H, Prévost G. Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications. FEMS Microbiol Rev. 2004;28:183-200. https://

doi.org/10.1016/j.femsre.2003.09.003

Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10:505-20.

Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005; 5:751-62. https://doi.org/10.1016/S1473-3099(05)70295-4

Kluytmans JA, Wertheim HF. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection. 2005;33:3-8. https://doi.org/10.1007/s15010-005-

-9

Argudin MA, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel). 2010;2:1751-73. https://doi.org/10.3390/toxins2071751

François P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approaches to study Staphylococcus aureus pathogenesis. J Proteomics. 2010;73:701-8. https://doi.org/10.1016/j.jprot.2009.10.007

Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin Microbiol Rev. 2000;13:16-34. https://doi.org/10.1128/CMR.13.1.16-34.2000

Varshney AK, Mediavilla JR, Robiou N, Guh A, Wang X, Gialanella P, et al. Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York. Appl Environ Microbiol. 2009;75:6839-49. https://doi.org/10.1128/AEM.00272-09

Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of methicillinresistant Staphylococcus aureus. Lancet. 2001;357:1225-40. https://doi.org/10.1016/S0140-6736(00)04403-2

McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: An update. Annu Rev Microbiol. 2001;55:77-104. https://doi.org/10.1146/annurev.micro.55.1.77

Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, et al. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol. 2001;166:669-77. https://doi.org/10.4049/jimmunol.166.1.669

Chiang YC, Liao WW, Fan CM, Pai WY, Chiou CS, Tsen HY. PCR detection of staphylococcal enterotoxins (SEs) N, O, P, Q, R, U, and survey of SE types in Staphylococcus aureus isolates from food-poisoning cases in Taiwan. Int J Food Microbiol. 2008;121:66-73. https://doi.org/10.1016/j.ijfoodmicro.2007.10.005

Wilson G, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman J, et al. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 2011;7:e1002271. https://doi.org/10.1371/journal.ppat.1002271

Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin Microbiol Rev. 1999;12:224-42.

Plano LR. Staphylococcus aureus exfoliative toxins: How they cause disease. J Invest Dermatol. 2004;122:1070-7. https://doi.org/10.1111/j.1523-1747.2004.22144.x

Ferry T, Thomas D, Perpoint T, Lina G, Monneret G, Mohammedi I, et al. Analysis of superantigenic toxin Vβ T-cell signatures produced during cases of staphylococcal toxic shock syndrome and septic shock. Clin Microbiol Infect. 2008;14:546-54. https://doi.org/10.1111/j.1469-0691.2008.01975.x

Fleischer B, Schrezenmeier H. T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med. 1988;167:1697-707. https://doi.org/10.1084/jem.167.5.1697

Jordan GB, Marucci RS, Guida AM, Pires PS, Manfredi EA. Portación y caracterización de Staphylococcus aureus en manipuladores de alimentos. Rev Argent Microbiol. 2012;44:101-4.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Protocols in Molecular Biology. New York: Wiley Interscience; 1989.

Johnson WM, Tyler SD, Ewan EP, Pollard DR, Rozee KR. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol. 1991;29:426-30.

Corredor LF, Moncayo JI, Santacruz JJ, Álvarez A. Detección de genes de toxinas pirogénicas y toxinas exfoliativas en aislamientos clínicos de Staphylococcus aureus en Colombia. Investigaciones Andina. 2012;14:577-87.

Corredor LF, Luligo JS, Moncayo JI, Santacruz JJ, Álvarez A. Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colombia Médica.2016;47:90-5.

Merhotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol. 2000;38:1032-35.

Ruzickova V, Voller J, Pantucek R, Petras P, Doskar J. Multiplex PCR for detection of three exfoliative toxin serotype genes in Staphylococcus aureus. Folia Microbiol (Praha). 2005;50:499-502.

Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus

aureus isolates. FEMS Microbiol Lett. 2005;246:191-8. https://doi.org/10.1016/j.femsle.2005.04.007

Lu PL, Chin LC, Peng CF, Chiang YH, Chen TP, Ma L, et al. Risk factors and molecular analysis of community methicillin-resistant Staphylococcus aureus carriage. J Clin Microbiol. 2005;43:132-9. https://doi.org/10.1128/JCM.43.1.132-139.2005

Kuehnert MJ, Kruszon-Moran D, Hill HA, Mcquillan G, Mcallister SK, Fosheim G, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001-2002. J Infect Dis. 2006;193:172-9. https://doi.org/10.1086/499632

Wattinger L, Stephan R, Layer F, Johler S. Comparison of Staphylococcus aureus isolates associated with food intoxication with isolates from human nasal carriers and human infections. Eur J Clin Microbiol Infect Dis. 2012;31:455-64. https://doi.org/10.1007/s10096-011-1330-y

Udo EE, Al-Mufti S, Albert MJ. The prevalence of antimicrobial resistance and carriage of virulence genes in Staphylococcus aureus isolated from food handlers in Kuwait City restaurants. BMC Res Notes. 2009;2:108. https://doi.org/10.1186/1756-0500-2-108

Al-Bustan MA, Udo EE, Chugh TD.Nasal carriage of enterotoxin producing Staphylococcus aureus among restaurant workers in Kuwait City. Epidemiol Infect. 1996;116:319-22.

Chiang YC, Lin CW, Yang CY, Tsen HY. PCR primers for the detection of staphylococcal enterotoxin K, L, and M and survey of staphylococcal enterotoxin types in Staphylococcus aureus isolates from food poisoning cases in Taiwan. J Food Prot. 2006;69:1072-9. https://doi.org/10.4315/0362-028X-69.5.1072

Figueroa G, Navarrete P, Caro M, Troncoso M, Faúndez G. Portación de Staphylococcus aureus enterotoxigénicos en manipuladores de alimentos. Rev Med Chile. 2002;130:859-

https://doi.org/10.4067/S0034-98872002000800003

Mamprim FA. Enterotoxinas de Staphylococcus coagulase positiva e negativa isoladas das fossas nasais e mãos de manipuladores de alimentos (dissertação). São Paulo, SP:

Universidade Estadual Paulista; 2006.

Ladhani S. Understanding the mechanism of action of the exfoliative toxins of Staphylococcus aureus. Fems Immunol Med Microbiol. 2003;39:181-9. https://doi.org/10.1016/S0928-8244(03)00225-6

Yamasaki O, Tristan A, Yamaguchi T, Sugai M, Lina G,Bes M, et al. Distribution of the exfoliative toxin D gene in clinical Staphylococcus aureus isolates in France. Clin Microbiol Infect. 2006;12:585-8. https://doi.org/10.1111/j.1469-0691.2006.01410.x

Chance TD. Toxic shock syndrome: Role of the environment, the host and the microorganism. Br J Biomed Sci. 1996;53:284-9.

Aydin A, Sudagidan M, Muratoglu K. Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. Int J Food Microbiol. 2011;148:99-106. https://doi.org/10.1016/j.ijfoodmicro.2011.05.007

Sospedra I, Manes J, Soriano JM. Report of toxic shock syndrome toxin 1 (TSST-1) from Staphylococcus aureus isolated in food handlers and surfaces from food service establishments. Ecotoxicol Environ Saf. 2012;80:288-90. https://doi.org/10.1016/j.ecoenv.2012.03.011

Seo YH, Jang JH, Moon KD. Occurrence and characterization of enterotoxigenic Staphylococcus aureus isolated from minimally processed vegetables and sprouts in Korea. Food Sci Biotechnol. 2010;19:313-9. https://doi.org/10.1007/s10068-010-0045-7

Booth MC, Pence LM, Mahasreshti P, Callegan MC, Gilmore MS. Clonal associations among Staphylococcus aureus isolates from various sites of infection. Infect Immun. 2001;69:345-52. https://doi.org/10.1128/IAI.69.1.345-352.2001

Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70:631-41. https://doi.org/10.1128/IAI.70.2.631-641.2002

Teixeira LA, Resende CA, Ormonde LR, Rosenbaum R, Figueiredo AM, De Lencastre H, et al. Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. J Clin Microbiol.1995;33:2400-4.

Morales MG, Ruiz-de Chávez CG. Diferencias en la resistencia a los antimicrobianos de cepas de Staphylococcus aureus obtenidas de diversas fuentes de aislamiento. Revista del Centro de Investigación. Universidad La Salle, México. 2006;7:45-64.

Bystron J, Bania J, Zarczynska A, Korzekwa K, Molenda J, Kosek K. Detection of enterotoxigenic Staphylococcus aureus strains using a commercial Elisa and multiplex-PCR. Bull Vet Inst Pulawy. 2006;50:329-33.

Zschöck M, Botzler D, Blöcher S, Sommerhäuser J, Hamann HP. Detection of genes for enterotoxins (ent) and toxic shock syndrome toxin-1 (tst) in mammary isolates of Staphylococcus aureus by polymerase-chain-reaction. Int Dairy J. 2000;10:569-74. https://doi.org/10.1016/S0958-6946(00)00084-4

How to Cite
1.
Guaca-González YM, Flórez-Restrepo GF, Moncayo-Ortíz JI, Santacruz-Ibarra J, Álvarez-Aldana A. Detection and expression of superantigens and resistance in isolates from women carriers of Staphylococcus aureus who take care of and feed children. biomedica [Internet]. 2018 Mar. 15 [cited 2024 May 16];38(1):96-104. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3653

Some similar items:

Published
2018-03-15
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code