Preventive measures focused on the urban-rural interface protect rural food-producing communities from SARS-CoV-2

Gina Polo, Diego Soler-Tovar, Luis Carlos Villamil-Jiménez, Carlos Mera , .

Keywords: coronavirus infections/prevention and control, communicable disease control, Rural population, Colombia

Abstract

Introduction: Rural food-producing communities are fundamental for the development of economic activities associated with sustainability and food security. However, despite the importance of rurality in Colombia, preventive strategies continue to be implemented homogeneously, without considering the dynamics of SARS-CoV-2 in rural food-producing communities.
Objective: To model real areas in Colombia involving rural and urban populations that have intrinsic SARS-CoV-2 transmission dynamics. Characterize rural-urban interactions by means of a parameter that provides different scenarios and allows us to identify interactions capable of preventing SARS-CoV-2 transmission in rural food-producing communities.
Materials and methods: The dynamics of SARS-CoV-2 infection was modeled in five case studies (Boyacá, Caquetá, Cundinamarca, Santander and Sucre) considering urban and rural areas and their interaction (connectivity) in the urban-rural interface. For this purpose, an epidemiological compartmental model considering a classification of individuals according to their economic activity and their epidemiological status was assessed.
Results: Preventive measures focused on the urban-rural interface impact the number of deaths in rural areas. Hence, it is possible to assume that the dynamics of the disease in rural areas depend on the constant interaction with infected individuals from urban areas, which occurs due to the food production dynamics in the urban-rural interface.
Conclusions: Preventive measures should focus on places of high transmissibility and risk for rural communities, such as the urban-rural interface. This work highlights the importance of national heterogeneous preventive measures and the protection of rural communities from the social and economic impacts of SARS-CoV-2.

Downloads

Download data is not yet available.
  • Gina Polo Grupo de Investigación en Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, D.C., Colombia
  • Diego Soler-Tovar Grupo de Investigación en Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, D.C., Colombia
  • Luis Carlos Villamil-Jiménez Grupo de Investigación en Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, D.C., Colombia
  • Carlos Mera Grupo de Investigación en Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, D.C., Colombia; Center for Natural and Human Sciences, Universidade Federal do ABC, Santo Andre, SP, Brazil https://orcid.org/0000-0002-9148-2142

References

World Health Organization, WHO. Coronavirus disease (COVID-2019) situation reports 2020. Accessed: August 6, 2020. Available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports.

Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. 2020;369:846-9. https://doi.org/10.1126/science.abc6810

Caicedo-Gómez, A. Principales medidas de gasto público en Colombia adoptadas en el estado de emergencia económica, social y ecológica implementado por el Decreto Legislativo 417 de 2020. Revista Derecho Fiscal. 2020;18:117-42. https://doi.org/10.18601/16926722.n18.05

White B. Rural youth, today and tomorrow. IFAD Research Series. 2020;48:1-29. https://doi.org/10.2139/ssrn.3567742

Departamento Administrativo Nacional de Estadística. Proyecciones de Población. 2018. Accessed: August 6, 2020. Available at: https://www.dane.gov.co/index.php/estadisticas-portema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018

Instituto Geográfico Agustín Codazzi. Tan solo el 0,3 por ciento de todo el territorio colombiano corresponde a áreas urbanas. Accessed: August 7, 2020. Available at: https://igac.gov.co/es/noticias/tan-solo-el-03-por-ciento-de-todo-el-territorio-colombianocorresponde-areas-urbanas-igac

Centro Latinoamericano para el Desarrollo Rural. Informe de Gestión Oficina Colombia. 2018. Accessed: August 7, 2020. Available at: https://www.rimisp.org

Instituto Nacional de Salud. COVID-19 Colombia. Accessed: August 6, 2020. Available at: https://www.ins.gov.co/Noticias/paginas/coronavirus.aspx

Polo G, Soler-Tovar D, Villamil-Jiménez LC, Benavides- Ortiz E, Mera Acosta C. SARSCoV-2 transmission dynamics in the urban-rural interface. Public Health. 2022;206:1-4. https://doi.org/10.1016/j.puhe.2022.02.007

Bolker B. Maximum likelihood estimation and analysis with the bbmle package. Fecha de consulta: 10 de agosto de 2020. Disponible en: Accessed: August 6, 2020. Available at: https://cran.r-project.org/web/packages/bbmle/vignettes/mle2.pdf

Cauchemez S, Ferguson NM. Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London. J R Soc Interface. 2018;5:885-97. https://doi.org/10.1098/rsif.2007.1292

Eikenberry SE, Mancuso M, Iboi E, Phan T, Eikenberry K, Kuang Y, et al. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect Dis Model. 2020;5:293-308. https://doi.org/10.1016/j.idm.2020.04.001

Ferguson N, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. London: Imperial College London COVID-19; 2020. p.1-20. https://doi.org/10.25561/77482

Belik V, Geisel T, Brockmann, D. Natural human mobility patterns and spatial spread of infectious diseases. Physical Review X. 2011;1:011001. https://doi.org/10.1103/PhysRevX.1.011001

Polo G, Mera Acosta C, Labruna MB, Ferreira F, Brockmann D. Hosts mobility and spatial spread of Rickettsia rickettsii. PLoS Comput Biol. 2018;14:e1006636. https://doi.org/10.1371/journal.pcbi.1006636

Schlosser F, Maier BF, Jack O, Hinrichs D, Zachariae A, Brockmann D. COVID-19 lockdown induces disease-mitigating structural changes in mobility networks. Proc Natl Acad Sci USA. 2020;117:32883-90. https://doi.org/10.1073/pnas.2012326117

Polo G, Labruna MB, Ferreira F. Basic reproduction number for the Brazilian Spotted Fever. J Theor Biol. 2018;458:119-24. https://doi.org/10.1016/j.jtbi.2018.09.011

Lerner AM, Eakin H. An obsolete dichotomy? Rethinking the rural-urban interface in terms of food security and production in the global south. The Geogr J. 2011;177:311-20.

Ueki H, Furusawa Y, Iwatsuki-Horimoto K, Imai M, Kabata H, Nishimura H, et al. Effectiveness of face masks in preventing airborne transmission of SARS-CoV-2. MSphere. 2020;5:e00637-20. https://doi.org/10.1128/mSphere.00637-20

Freedman DO, Wilder-Smith A. In-flight transmission of SARS-CoV-2: A review of the attack rates and available data on the efficacy of face masks. J Travel Med. 2020;27:taaa178. https://doi.org/10.1093/jtm/taaa178

Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet. 2020;395:1973-87. https://doi.org/10.1016/S0140-6736(20)31142-9

Luo K, Lei Z, Hai Z, Xiao S, Rui J, Yang H, et al. Transmission of SARS-CoV-2 in public transportation vehicles: A case study in Hunan province, China. Open Forum Infect Dis. 2020;7:ofaa430. https://doi.org/10.1093/ofid/ofaa430

Di Carlo P, Chiacchiaretta P, Sinjari B, Aruffo E, Stuppia L, De Laurenzi V, et al. Air and surface measurements of SARS-CoV-2 inside a bus during normal operation. PLoS ONE. 2020;15:e0235943. https://doi.org/10.1371/journal.pone.0235943

Ma QX, Shan H, Zhang HL, Li GM, Yang RM, Chen JM. Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2. J Med Virol. 2020;92:1567-71. https://doi.org/10.1002/jmv.25805

Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, Janekrongtham C, Ruampoom D, Daochaeng N, et al. Case-control study of use of personal protective measures and risk for SARS-CoV 2 infection, Thailand. Emerg Infect Dis. 2020;26:2607. https://doi.org/10.3201/eid2611.203003

Araújo MB, Mestre F, Naimi B. Ecological and epidemiological models are both useful for SARS-CoV-2. Nat Ecol Evol. 2020;4:1153-4. https://doi.org/10.1038/s41559-020-1246-y

Polo G, Soler-Tovar D, Villamil-Jiménez LC, Benavides-Ortiz E, Mera Acosta. Bayesian spatio-temporal modeling of COVID-19: Inequalities on case-fatality risk. Spat Spatiotemporal Epidemiol. 2022. https://doi.org/10.1016/j.sste.2022.100494

How to Cite
1.
Polo G, Soler-Tovar D, Villamil-Jiménez LC, Mera C. Preventive measures focused on the urban-rural interface protect rural food-producing communities from SARS-CoV-2. biomedica [Internet]. 2022 Oct. 31 [cited 2024 May 18];42(Sp. 2):32-9. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6313

Some similar items:

Published
2022-10-31
Section
Original articles

Altmetric

Funding data

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code