Disaster mycology

Daniel F. Q Smith, Arturo Casadevall, .

Keywords: Mycology, fungi, climate change, Candida auris, natural disasters

Abstract

Natural and human-made disasters have long played a role in shaping the environment and microbial communities, also affecting non-microbial life on Earth. Disaster microbiology is a new concept based on the notion that a disaster changes the environment causing adaptation or alteration of microbial populations –growth, death, transportation to a new area, development traits, or resistance– that can have downstream effects on the affected ecosystem. Such downstream effects include blooms of microbial populations and the ability to colonize a new niche or host, cause disease, or survive in former extreme conditions.
Throughout history, fungal populations have been affected by disasters. There are prehistoric archeological records of fungal blooms after asteroid impacts and fungi implicated in the fall of the dinosaurs. In recent times, drought and dust storms have caused disturbance of soil fungi, and hurricanes have induced the growth of molds on wet surfaces, resulting in an increased incidence of fungal disease. Probably, the anticipated increase in extreme heat would force fungi adaptation to survive at high temperatures, like those in the human body, and thus be able to infect mammals. This may lead to a drastic rise of new fungal diseases in humans.

Downloads

Download data is not yet available.
  • Daniel F. Q Smith W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD, USA https://orcid.org/0000-0002-7674-9988
  • Arturo Casadevall W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD, USA https://orcid.org/0000-0002-9402-9167

References

Smith DFQ, Casadevall A. Disaster microbiology—a new field of study. mBio. 2022;13:e01680-22. https://doi.org/10.1128/mbio.01680-22

American Society for Microbiology. Microbes and Climate Change – Science, People & Impacts: Report on an American Academy of Microbiology Virtual Colloquium held on Nov. 5, 2021. Washington, D.C.: American Society for Microbiology; 2022. Consulted: May 1st, 2022. Available from: https://asm.org/Reports/Microbes-Climate-Change-Science,-People,-Impacts

Berbee ML, Strullu-Derrien C, Delaux PM, Strother PK, Kenrick P, Selosse MA, et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat Rev Microbiol. 2020;18:717-30. https://doi.org/10.1038/s41579-020-0426-8

Ivarsson M, Broman C, Sturkell E, Ormö J, Siljeström S, van Zuilen M, et al. Fungal colonization of an Ordovician impact-induced hydrothermal system. Sci Rep. 2013;3:3487. https://doi.org/10.1038/srep03487

Rampino MR, Eshet Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geoscience Frontiers. 2018;9:147-54. https://doi.org/10.1016/j.gsf.2017.06.005

Steiner MB, Eshet Y, Rampino MR, Schwindt DM. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeogr Palaeoclimatol Palaeoecol. 2003;194:405-14. https://doi.org/10.1016/S0031-0182(03)00230-X

Hochuli PA. Interpretation of “fungal spikes” in Permian-Triassic boundary sections. Glob Planet Change. 2016;144:48-50. https://doi.org/10.1016/j.gloplacha.2016.05.002

Visscher H, Sephton MA, Looy CV. Fungal virulence at the time of the end Permian biosphere crisis? Geology. 2011;39:883-6. https://doi.org/10.1130/G32178.1

Gueidan C, Ruibal C, de Hoog GS, Schneider H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol. 2011;115:987-96. https://doi.org/10.1016/j.funbio.2011.04.002

Vajda V, McLoughlin S. Fungal proliferation at the Cretaceous-Tertiary boundary. Science. 2004;303:1489. https://doi.org/10.1126/science.1093807

Casadevall A. Fungal virulence, vertebrate endothermy, and dinosaur extinction: Is there a connection? Fungal Genet Biol. 2005;42:98-106. https://doi.org/10.1016/j.fgb.2004.11.008

Casadevall A. Fungi and the rise of mammals. PLOS Pathog. 2012;8:e1002808. https://doi.org/10.1371/journal.ppat.1002808

Casadevall A, Damman C. Updating the fungal infection-mammalian selection hypothesis at the end of the Cretaceous Period. PLOS Pathog. 2020;16:e1008451. https://doi.org/10.1371/journal.ppat.1008451

Gillooly JF, Allen AP, Charnov EL. Dinosaur fossils predict body temperatures. PLOS Biol. 2006;4:e248. https://doi.org/10.1371/journal.pbio.0040248

Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA. Evidence for mesothermy in dinosaurs. Science. 2014;344:1268-72. https://doi.org/10.1126/science.1253143

Robert VA, Casadevall A. Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis. 2009;200:1623-6. https://doi.org/10.1086/644642

Woodruff DC, Wolff EDS, Wedel MJ, Dennison S, Witmer LM. The first occurrence of an avian-style respiratory infection in a non-avian dinosaur. Sci Rep. 2022;12:1954. https://doi.org/10.1038/s41598-022-05761-3

Marr JS, Malloy CD. An epidemiologic analysis of the ten plagues of Egypt. Caduceus. 1996;12:724.

Marr JS, Malloy CD. Effects of mycotoxins in health and disease. JAMA. 1997;278:1062-3. https://doi.org/1010.1001/jama.278.13.1062

Casadevall A. Climate change brings the specter of new infectious diseases. J Clin Invest. 2020;130:553-5. https://doi.org/10.1172/JCI135003

Filippini T, Hatch EE, Rothman KJ, Heck JE, Park AS, Crippa A, et al. Association between outdoor air pollution and childhood leukemia: A systematic review and dose–response metaanalysis. Environ Health Perspect. 2019;127:46002. https://doi.org/10.1289/EHP4381

Yu CL, Wang SF, Pan PC, Wu MT, Ho CK, Smith TJ, et al. Residential exposure to petrochemicals and the risk of leukemia: Using geographic information system tools to estimate individual-level residential exposure. Am J Epidemiol. 2006;164:200-7. https://doi.org/10.1093/aje/kwj182

Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132-41. https://doi.org/10.1001/jama.287.9.1132

Bizzozero OJ, Johnson KG, Ciocco A, Hoshino T, Itoga T, Toyoda S, et al. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. N Engl J Med. 1966;274:1095-101. https://doi.org/10.1056/NEJM196605192742001

Gluzman D, Imamura N, Sklyarenko L, Nadgornaya V, Zavelevich M, Machilo V. Patterns of hematological malignancies in Chernobyl clean-up workers (1996-2005). Exp Oncol. 2006;28:60-3.

Koval SV, Gluzman DF, Sklyarenko LM, Ivanivska TS, Zavelevich MP, Philchenkov AA, et al. Hematological malignancies in Ukraine in post-Chernobyl era: Sources of data and their preliminary analysis. Ann Hematol. 2020;99:1543-50. https://doi.org/10.1007/s00277-020-04076-5

Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, Martino B, et al. The epidemiology of fungal infections in patients with hematologic malignancies: The SEIFEM-2004 study. Haematologica. 2006;91:1068-75.

Mor M, Gilad G, Kornreich L, Fisher S, Yaniv I, Levy I. Invasive fungal infections in pediatric oncology. Pediatr Blood Cancer. 2011;56:1092-7. https://doi.org/10.1002/pbc.23005

Federal Emergency Management Agency. Natural hazards. National risk index. Consulted: Jan 6, 2023. Available from: https://hazards.fema.gov/nri/natural-hazards

Rubeis VD, Lee J, Anwer MS, Yoshida-Montezuma Y, Andreacchi AT, Stone E, et al. Impact of disasters, including pandemics, on cardiometabolic outcomes across the lifecourse: A systematic review. BMJ Open. 2021;11:e047152. https://doi.org/110.1136/bmjopen-2020-047152

Jaffe HW, Bregman DJ, Selik RM. Acquired immune deficiency syndrome in the United States: The First 1,000 Cases. J Infect Dis. 1983;148:339-45. https://doi.org/10.1093/infdis/148.2.339

Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 2014;22:120-7. https://doi.org/10.1016/j.tim.2014.01.001

Basile K, Halliday C, Kok J, Chen SCA. Fungal infections other than invasive aspergillosis in COVID-19 patients. J Fungi (Basel). 2022;8:58. https://doi.org/10.3390/jof8010058

Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al. COVID19-associated fungal infections. Nat Microbiol. 2022;7:1127-40. https://doi.org/10.1038/s41564-022-01172-2

Prattes J, Wauters J, Giacobbe DR, Salmanton-García J, Maertens J, Bourgeois M, et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients – a multinational observational study by the European Confederation of Medical Mycology. Clin Microbiol Infect. 2022;28:580-7. https://doi.org/10.1016/j.cmi.2021.08.014

Gold JAW, Ahmad FB, Cisewski JA, Rossen LM, Montero AJ, Benedict K, et al. Increased deaths from fungal infections during the COVID-19 pandemic—National Vital Statistics System, United States, January 2020–December 2021. Clin Infect Dis. 2022;ciac489. https://doi.org/10.1093/cid/ciac489

Centers for Disease Control and Prevention. Increase in coccidioidomycosis--Arizona, 1998-2001. MMWR Morb Mortal Wkly Rep. 2003;52:109-12.

Flynn NM, Hoeprich PD, Kawachi MM, Lee KK, Lawrence RM, Goldstein E, et al. An unusual outbreak of windborne coccidioidomycosis. N Engl J Med. 1979;301:358-61. https://doi.org/10.1056/NEJM197908163010705

Schneider E, Hajjeh RA, Spiegel RA, Jibson RW, Harp EL, Marshall GA, et al. A Coccidioidomycosis outbreak following the Northridge, Calif, Earthquake. JAMA. 1997;277:904-8

Fanfair RN, Benedict K, Bos J, Bennett SD, Lo YC, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a Tornado in Joplin, Missouri, in 2011. N Engl J Med 2012;367:2214-25. https://doi.org/10.1056/NEJMoa1204781

Kawakami Y, Tagami T, Kusakabe T, Kido N, Kawaguchi T, Omura M, et al. Disseminated aspergillosis associated with Tsunami lung. Respir Care. 2012;57:1674-8. https://doi.org/10.4187/respcare.01701

Benedict K, Park BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;20:349-55. https://doi.org/10.3201/eid2003.131230

Engelthaler DM, Casadevall A. On the emergence of Cryptococcus gattii in the Pacific Northwest: Ballast tanks, tsunamis, and black swans. mBio. 2019;10:e02193-19. https://doi.org/10.1128/mBio.02193-19

Espinel-Ingroff A, Kidd SE. Current trends in the prevalence of Cryptococcus gattii in the United States and Canada. Infect Drug Resist. 2015;8:89-97. https://doi.org/10.2147/IDR.S57686

Vélez-Torres LN, Bolaños-Rosero B, Godoy-Vitorino F, Rivera-Mariani FE, Maestre JP, Kinney K, et al. Hurricane María drives increased indoor proliferation of filamentous fungi in San Juan, Puerto Rico: A two-year culture-based approach. Peer J. 2022;10:e12730. https://doi.org/10.7717/peerj.12730

Cummings KJ, Cox-Ganser J, Riggs MA, Edwards N, Hobbs GR, Kreiss K. Health effects of exposure to water-damaged New Orleans homes six months after hurricanes Katrina and Rita. Am J Public Health. 2008;98:869-75. https://doi.org/10.2105/AJPH.2007.118398

Bolaños-Rosero B, Hernández-González X, Cavallín-Calanche HE, GodoyVitorino F, Vesper S. Impact of hurricane Maria on mold levels in the homes of Piñones, Puerto Rico. Air Qual Atmos Health. 2022;16:661-668. https://doi.org/10.1007/s11869-022-01297-7

Toda M, Williams S, Jackson BR, Wurster S, Serpa JA, Nigo M, et al. Invasive mold infections following Hurricane Harvey — Houston, Texas. Open Forum Infect Dis. 2023;10:ofad093. https://doi.org/10.1093/ofid/ofad093

Tal A. Pollution in a promised land: An environmental history of Israel. Pollution in a Promised Land. University of California Press; 2002. Consulted: Jan 7, 2023. Available from: https://www.degruyter.com/document/doi/10.1525/9780520936492/html

The Times of Israel. 25 years later, today’s Australian delegation remembers the Maccabiah Bridge tragedy. Consulted: Jan 7, 2023. Available from: https://www.timesofisrael.com/25-years-later-todays-australian-delegation-remembers-the-maccabiah-bridge-tragedy/

Gunaratne PS, Wijeyaratne CN, Chandrasiri P, Sivakumaran S, Sellahewa K, Perera P, et al. An outbreak of Aspergillus meningitis following spinal anaesthesia for caesarean section in Sri Lanka: a post-tsunami effect. Ceylon Med J. 2006;51:137-42. https://doi.org/10.4038/cmj.v51i4.1142

Smith RM, Derado G, Wise M, Harris JR, Chiller T, Meltzer MI, et al. Estimated deaths and illnesses averted during fungal meningitis outbreak associated with contaminated steroid injections, United States, 2012–2013. Emerg Infect Dis. 2015;21:933-40. https://doi.org/10.3201/eid2106.141558

Smith RM, Schaefer MK, Kainer MA, Wise M, Finks J, Duwve J, et al. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med. 2013;369:1598-609. https://doi.org/10.1056/NEJMoa1213978

Secretaría de Salud Gobierno de México. Comunicado Técnico Diario Meningitis Histórico 2022. Consulted: Jan 8, 2023. Available from: http://www.gob.mx/salud/documentos/comunicado-tecnico-diario-meningitis-historico-2022

Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA, et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang. 2022;12:869-75. https://doi.org/10.1038/s41558-022-01426-1

Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20:193-205. https://doi.org/10.1038/s41579-021-00639-z

Gorris ME, Treseder KK, Zender CS, Randerson JT. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth. 2019;3:308-27. https://doi.org/10.1029/2019GH000209

Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: Climate change, azoles, swamps, and birds. mBio. 2019;10: e01397-19. https://doi.org/10.1128/mBio.01397-19

Gange AC, Gange EG, Mohammad AB, Boddy L. Host shifts in fungi caused by climate change? Fungal Ecology. 2011;4:184-90.

Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. mBio. 2010;1:e00061-10. https://doi.org/10.1128/mBio.00061-10

Robert V, Cardinali G, Casadevall A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 2015;13:18. https://doi.org/10.1186/s12915-015-0127-3

Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio. 2020;11:e03364-19. https://doi.org/10.1128/mBio.03364-19

Duarte-Escalante E, Reyes-Montes M del R, Frías-De-León MG, Meraz-Ríos B. Effect of climate change on the incidence and geographical distribution of coccidioidomycosis. In: Frías-De-León MG, Brunner-Mendoza C, Reyes-Montes M del R, Duarte-Escalante E, editors. The impact of climate change on fungal diseases. Cham: Springer International Publishing; 2022. p. 131-43. Consulted: Jan 8, 2023. Available from: https://doi.org/10.1007/978-3-030-89664-5_8

Vanderbeke L, Spriet I, Breynaert C, Rijnders BJA, Verweij PE, Wauters J. Invasive pulmonary aspergillosis complicating severe influenza: Epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2018;31:471. https://doi.org/10.1097/QCO.0000000000000504

Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, et al. Tropical cyclones and climate change. Nature Geosci. 2010;3:157-63.

Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, et al. Tropical cyclones and climate change. WIREs Climate Change. 2016;7:65-89.

How to Cite
1.
Smith DFQ, Casadevall A. Disaster mycology. biomedica [Internet]. 2023 Aug. 31 [cited 2024 May 21];43(Sp. 1):267-7. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6943

Some similar items:

Published
2023-08-31

Altmetric

Funding data

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code