Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016

Ana Mercedes Rada, Christian Hernández-Gómez, Eliana Restrepo, Maria Virginia Villegas, .

Palabras clave: betalactamasas, bacterias Gram negativas, infecciones bacterianas, programas de optimización del uso de los antimicrobianos, Colombia

Resumen

Las betalactamasas, enzimas con capacidad hidrolítica frente a los antibióticos betalactámicos, son responsables del principal mecanismo de resistencia en bacterias Gram negativas; las de mayor impacto clínico y epidemiológico en los hospitales, son las betalactamasas de espectro extendido (BLEE), las de tipo AmpC y las carbapenemasas. El incremento en su frecuencia y su diseminación a nivel mundial ha limitado cada vez más las opciones terapéuticas tanto en infecciones adquiridas en los hospitales como las que se generan en la comunidad.
En Colombia, las redes de vigilancia y los grupos de investigación iniciaron su estudio desde finales de los años 90 y, así, se logró la caracterización molecular de las diferentes variantes; además, se reportó una gran prevalencia y diseminación en los hospitales de mediana y alta complejidad, y se describió el impacto clínico de las infecciones que causan. Dichos estudios han evidenciado el alto grado de endemia de algunas de estas betalactamasas y, en consecuencia, la necesidad de una inmediata implementación de programas para inducir el uso prudente de los antibióticos y de medidas de vigilancia, que permitan controlar y prevenir su diseminación, con el fin de disminuir la morbimortalidad en los pacientes y preservar las opciones terapéuticas disponibles en la actualidad.
En esta revisión, se recopiló la información sobre las variantes, la distribución geográfica y la caracterización molecular de las betalactamasas en Colombia, así como los estudios llevados a cabo desde finales de la década de 90 hasta el 2016.

Descargas

La descarga de datos todavía no está disponible.
  • Ana Mercedes Rada Grupo Bacterias & Cáncer, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia Grupo Biociencias, Facultad Ciencias de la Salud, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
  • Christian Hernández-Gómez Unidad de Resistencia Bacteriana - Epidemiología Hospitalaria, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá D.C., Colombia
  • Eliana Restrepo Grupo Bacterias & Cáncer, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
  • Maria Virginia Villegas Unidad de Resistencia Bacteriana - Epidemiología Hospitalaria, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá D.C., Colombia

Citas

Balsalobre LC, Dropa M, Matté MH. An overview of antimicrobial resistance and its public health significance. Braz J Microbiol. 2014;45:1-5. https://doi.org/10.1590/S1517-83822014005000033

Paterson DL. Impact of antibiotic resistance in gram-negative bacilli on empirical and definitive antibiotic therapy. Clin Infect Dis. 2008;47(Suppl.1):S14-20. https://doi.org/10.1086/590062

Tansarli GS, Karageorgopoulos DE, Kapaskelis A, Falagas ME. Impact of antimicrobial multidrug resistance on inpatient care cost: an evaluation of the evidence. Expert Rev Anti Infect Ther. 2013;11:321-31. https://doi.org/10.1586/eri.13.4

Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22:90-101. https://doi.org/10.1016/j.sjbs.2014.08.002

Rodríguez I, Thomas K, van Essen A, Schink AK, Day M, Chattaway M, et al. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany, The Netherlands and the UK. Int J Antimicrob Agents. 2014;43:553-7. https://doi.org/10.1016/j.ijantimicag.2014.02.019

Chouchani C, El Salabi A, Marrakchi R, Abouelkacem N, Walsh TR. Occurrence of clinical isolates of Klebsiella pneumoniae harboring chromosomally mediated and plasmid-mediated CTX-M-15 β-lactamase in a Tunisian hospital. Can J Microbiol. 2012;58:1099-103. https://doi.org/10.1139/w2012-089

Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care. 2015;5:61. https://doi.org/10.1186/s13613-015-0061-0

Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, et al. CTX-M: Changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59:165-74. https://doi.org/10.1093/jac/dkl483

Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161-82. https://doi.org/10.1128/CMR.00036-08

Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20:831-8. https://doi.org/10.1111/1469-0691.12655

Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E, Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis. 2014;18:421-33. https://doi.org/10.1016/j.bjid.2013.10.005

Casellas JM. Antibacterial drug resistance in Latin America: Consequences for infectious disease control. Rev Panam Salud Pública. 2011;30:519-28. https://doi.org/10.1590/S1020-49892011001200004

Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther. 2016;20:1-21. https://doi.org/10.1080/14787210.2017.1268918

González L, Cortés JA. Systematic review of antimicrobial resistance in Enterobacteriaceae isolates from Colombian hospitals. Biomédica. 2014;34:180-97. https://doi.org/10.7705/biomedica.v34i2.1550

Rojas LJ, Mojica MF, Blanco VM, Correa A, Montealegre MC, De la Cadena E, et al. Emergence of Klebsiella pneumoniae coharboring KPC and VIM carbapenemases in Colombia. Antimicrob Agents Chemother. 2013;57:1101-2. https://doi.org/10.1128/AAC.01666-12

Villegas M, Lolans K, del Rosario-Olivera M, Suárez CJ, Correa A. Queenan AM, et al. First detection of metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa isolates from Colombia. Antimicrob Agents Chemother. 2006;50:226-9. https://doi.org/10.1128/AAC.50.1.226-229.2006

Ruiz J. Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51:1109-17. https://doi.org/10.1093/jac/dkg222

Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2004;64:159-204. https://doi.org/10.2165/00003495-200464020-00004

Wolter DJ, Hanson ND, Lister PD. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett. 2004;236:137-43. https://doi.org/10.1111/j.1574-6968.2004.tb09639.x

Jacoby GA, Muñoz-Price LS. The new beta-lactamases. N Engl J Med. 2005;352:380-91. https://doi.org/10.1056/NEJMra041359

Ambler RP. The structure of b-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289:321-31. https://doi.org/10.1098/rstb.1980.0049

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for b-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211-33. https://doi.org/10.1128/AAC.39.6.1211

Bush K. β-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev. 1988;1:109-23. https://doi.org/10.1128/CMR.1.1.109

Bush K, Freudenberger JS, Sykes RB. Interaction of azthreonam and related monobactams with β-lactamase from gram-negative bacteria. Antimicrob Agents Chemother. 1982;22:414-20. https://doi.org/10.1128/AAC.22.3.414

Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54:969-76. https://doi.org/10.1128/AAC.01009-09

Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. J Antimicrob Chemother. 2006;57:373-83. https://doi.org/10.1093/jac/dki482

Laraki N, Franceschini N, Rossolini GM, Santucci P, Meunier C, de Pauw E, et al. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother. 1999;43:902-6. https://doi.org/10.1128/AAC.43.4.902

Sougakoff W, Goussard S, Gerbaud G, Courvalin P. Plasmid-mediated resistance to thirdgeneration cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev Infect Dis. 1988;10:879-84.

Tzouvelekis LS, Bonomo RA. SHV-type β-lactamases. Curr Pharm Des. 1999;5:847-64.

Bradford PA. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14:933-51. https://doi.org/10.1128/CMR.14.4.933-951.2001

Lahey Clinic. ß-lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. Fecha de consulta: 15 de febrero de 2017. Disponible en: https://www.lahey.org/studies/

Casellas JM, Goldberg M. Incidence of strains producing extended spectrum betalactamases in Argentina. Infection. 1989;17:434-6. https://doi.org/10.1007/BF01645567

Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, et al. Extendedspectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother. 2003;47:3554-60. https://doi.org/10.1128/AAC.47.11.3554-3560.2003

Espinal PA, Mantilla JR, Saavedra CH, Leal AL, Alpuche C, Valenzuela EM. Epidemiología molecular de infección nosocomial por Klebsiella pneumoniae productora de betalactamasas de espectro extendido. Biomédica. 2004;24:252-61. https://doi.org/10.7705/biomedica.v24i3.1271

Villegas MA, Correa A, Pérez F, Miranda MC, Zuluaga T, Quinn JP, et al. Prevalence and characterization of extended-spectrum β-lactamases in Klebsiella pneumoniae and Escherichia coli isolates from Colombian hospitals. Diagn Microbiol Infect Dis. 2004;49:217-22. https://doi.org/10.1016/j.diagmicrobio.2004.03.001

Espinal P, Garza-Ramos U, Reyna F, Rojas-Moreno T, Sánchez-Pérez A, Carrillo B, et al. Identification of SHV- thype and CTX-M-12 extended- spectrum β- lactamases (ESBLs) in multiresistant enterobacteriaceae from Colombian Caribbean hospitals. J Chemother. 2010;22:160-4. https://doi.org/10.1179/joc.2010.22.3.160

Pulido I, Mantilla J, Valenzuela E, Reguero M, González E. Distribución de genes codificadores de β-lactamasas de espectro extendido en aislamientos de Klebsiella pneumoniae de hospitales de Bogotá, D.C., Colombia. Biomédica. 2011;31:15-20. https://doi.org/10.7705/biomedica.v31i1.331

Gaitán S, Espinal P, Grupo de Investigación en Resistencia Bacteriana Región Caribe. Caracterización molecular de Escherichia coli y Klebsiella pneumoniae productores de β-lactamasas de espectro extendido en hospitales de la región Caribe, Colombia. Rev Chil Infect. 2009;26:239-246. https://doi.org/10.4067/S0716-10182009000400006

Mojica MF, Correa A, Vargas DA, Maya JJ, Montealegre MC, Rojas LJ, et al. Molecular correlates of the spread of KPC-producing Enterobacteriaceae in Colombia. Int J Antimicrob Agents. 2012;40:277-9. https://doi.org/10.1016/j.ijantimicag.2012.05.006

Martínez, P, Garzón D, Máttar S. CTX-M-producing Escherichia coli and Klebsiella pneumoniae isolated from community-acquired urinary tract infections in Valledupar, Colombia. Braz J Infect Dis. 2012;16:420-5. https://doi.org/10.1016/j.bjid.2012.05.001

Martínez P, Sánchez L, Máttar S. Carbapenemase KPC-2 in ESBL-producing Enterobacteriaceae from two clinics from Villavicencio, Colombia. Braz J Infect Dis. 2014;18:100-1. https://doi.org/10.1016/j.bjid.2013.09.002

García IA, Valenzuela EM, Saavedra CH, Leal AL, Eslava J, Mantilla JR. Caracterización molecular de aislamientos de Enterobacter cloacae multirresistentes, productores ß-lactamasas provenientes de pacientes de un hospital de tercer nivel de Bogotá. Revista de la Facultad de Medicina de la Universidad Nacional de Colombia. 2005;53:148-59.

González E, Valenzuela E, Mantilla J, Leal A, Saavedra C, Eslava J. Resistencia a cefepime en aislamientos de Enterobacter cloacae provenientes de hospitales de Bogotá, Colombia. Rev Salud Pública. 2006;8:191-9. https://doi.org/10.1590/S0124-00642006000200007

Cuzon G, Naas T, Correa A, Quinn JP, Villegas MV, Nordmann P. Dissemination of the KPC- 2 carbapenemase in non-Klebsiella pneumoniae enterobacterial isolates from Colombia. Int J Antimicrob Agents. 2013;42:59-62. https://doi.org/10.1016/j.ijantimicag.2013.04.002

Paterson DL, Bonomo RA. Extended-spectrum β-Lactamases: A clinical update. Clin Microbiol Rev. 2005;18:657-86. https://doi.org/10.1128/CMR.18.4.657-686.2005

Bonnet R. Growing group of extended spectrum b-lactamases: The CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004

Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect Dis. 2008;8:159-66. https://doi.org/10.1016/S1473-3099(08)70041-0

Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61:273-81. https://doi.org/10.1093/jac/dkm464

Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gramnegative bacterial pathogens. Int J Med Microbiol. 2010;300:371-9. https://doi.org/10.1016/j.ijmm.2010.04.005

Rasmussen JW, Hoiby N. Cefotaximases (CTX-M-ases), an expanding family of extendedspectrum beta-lactamases. Can J Microbiol. 2004; 50:137-65. https://doi.org/10.1139/w03-111

Radice M, Power P, Di Conza J, Gutkind G. Early dissemination of CTX-M-derived enzymes in South America. Antimicrob Agents Chemother. 2002;46:602-4. https://doi.org/10.1128/AAC.46.2.602-604.2002

Villegas MV, Correa A, Pérez F, Zuluaga T, Radice M, Gutkind G, et al. CTX-M-12 β-lactamase in a Klebsiella pneumoniae clinical isolate in Colombia. Antimicrob Agents Chemother. 2004;48:629-31. https://doi.org/10.1128/AAC.48.2.629-631.2004

Mantilla JR, Reguero MT, González E, García I, Leal A, Espinal P, et al. Caracterización molecular de un brote por Klebsiella pneumoniae productora de CTX-M-12 en la unidad de cuidado intensivo neonatal de un hospital colombiano. Biomédica. 2006;26:408-14. https://doi.org/10.7705/biomedica.v26i3.359

Valenzuela EM, Mantilla JR, Reguero MT, González EB, Pulido IY, Llerena ID, et al. Detection of CTX-M-1, CTX-M-15, and CTX-M-2 in clinical isolates of Enterobacteriaceae in Bogotá, Colombia. J Clin Microbiol. 2006;44:1919-20. https://doi.org/10.1128/JCM.44.5.1919-1920.2006

Celis Y, Pulido I, Valenzuela-de Silva E, Reguero M, Mantilla J. Ambiente genético del gen blaCTX-M-12 en aislamientos hospitalarios de Klebsiella pneumoniae. Rev Colomb Biotecnol. 2009;11:48-58.

Mantilla JR, Barreto E, Reguero MT, Velandia DA. Identifying cefotaximase genes in Enterobacteriaceae hospital isolates by PCR-SSCP. Rev Colomb Biotecnol. 2009;11:57-65.

Ruiz SJ, Montealegre MC, Ruiz-Garbajosa P, Correa A, Briceño DF, Martínez E, et al. First characterization of CTX-M-15-producing Escherichia coli ST131 and ST405 clones causing community-onset infections in South America. J Clin Microbiol. 2011;49:1993-6. https://doi.org/10.1128/JCM.00045-11

González LM, Pérez-Díaz JC, Ayala J, Casellas JM, Martínez-Beltrán J, Bush K, et al. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob Agents Chemother. 1994;38:2150-7. https://doi.org/10.1128/AAC.38.9.2150

Rapoport M, Monzani V, Pasteran F, Morvay L, Faccone D, Petroni A, et al. CMY- 2-type plasmid-mediated AmpC beta-lactamase finally emerging in Argentina. Int J Antimicrob Agents. 2008;31:385-7. https://doi.org/10.1016/j.ijantimicag.2007.11.016

Leal AL, Cortés JA, Arias G, Ovalle MV, Saavedra SY, Buitrago G, et al. Emergence of resistance to third generation cephalosporins by Enterobacteriaceae causing communityonset urinary tract infections in hospitals in Colombia. Enferm Infecc Microbiol Clin. 2013;31:298-303. https://doi.org/10.1016/j.eimc.2012.04.007

Queenan AM, Bush K. Carbapenemases: The versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440-58. https://doi.org/10.1128/CMR.00001-07

Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099-106. https://doi.org/10.1086/592412

Marchaim D, Chopra T, Pérez F, Hayakawa K, Lephart PR, Bheemreddy S, et al. Outcomes and genetic relatedness of carbapenem-resistant Enterobacteriaceae at Detroit medical center. Infect Control Hosp Epidemiol. 2011;32:861-71. https://doi.org/10.1086/661597

Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother. 1993;37:939-46. https://doi.org/10.1128/AAC.37.5.939

Pottumarthy S, Moland ES, Juretschko S, Swanzy SR, Thomson KS, Fritsche TR. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emerg Infect Dis. 2003;9:999-1002. https://doi.org/10.3201/eid0908.030096

Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist. 2006;12:223-30. https://doi.org/10.1089/mdr.2006.12.223

Radice M, Power P, Gutkind G, Fernández K, Vay C, Famiglietti A, et al. First class A carbapenemase isolated from Enterobacteriaceae in Argentina. Antimicrob Agents Chemother. 2004;48:1068-9. https://doi.org/10.1128/AAC.48.3.1068-1069.2004

Osterblad M, Kirveskari J, Hakanen AJ, Tissari P, Vaara M, Jalava J. Carbapenemase producing Enterobacteriaceae in Finland: The first years (2008-11). J Antimicrob Chemother. 2012;67:2860-4. https://doi.org/10.1093/jac/dks299

Blanco VM, Rojas LJ, De La Cadena E, Maya JJ, Camargo RD, Correa A, et al. First report of a nonmetallocarbapenemase class A carbapenemase in an Enterobacter cloacae isolate from Colombia. Antimicrob Agents Chemother. 2013;57:3457. https://doi.org/10.1128/AAC.02425-12

Yigit H, Queenan AM, Anderson GJ, Domenech-Sánchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing b-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151-61. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase producing bacteria. Lancet Infect Dis. 2009;9:228-36. https://doi.org/10.1016/S1473-3099(09)70054-4

Villegas M, Lolans K, Correa A, Suárez JC, López JA, Vallejo M, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother. 2006;50:2880-2. https://doi.org/10.1128/AAC.00186-06

Villegas MV, Lolans K, Correa A, Kattan JN, López JA, Quinn JP. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing betalactamase. Antimicrob Agents Chemother. 2007;51:1553-5. https://doi.org/10.1128/AAC.01405-06

Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother. 2008;52:1257-63. https://doi.org/10.1128/AAC.01451-07

Cuzon G, Naas T, Truong H, Villegas MV, Wisell KT, Carmeli Y, et al. Worldwide diversity of Klebsiella pneumoniae that produce beta-lactamase blaKPC-2 gene. Emerg Infect Dis. 2010;16:1349-56. https://doi.org/10.3201/eid1609.091389

Cuzon G, Naas T, Villegas MV, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother. 2011;55:5350-3. https://doi.org/10.1128/AAC.00297-11

Buelvas FA, Díaz MA, Muñoz AB, Tovar C. Aislamiento clínico de Pseudomonas aeruginosa productor de KPC-2 en la ciudad de Montería, Córdoba, Colombia. Infectio. 2013;17:35-8.

Pacheco R, Osorio L, Correa A, Villegas MV. Prevalencia de bacterias Gram negativas portadores del gen blaKPC en hospitales de Colombia. Biomédica. 2014;34(Supl.1):81-90. https://doi.org/10.7705/biomedica.v34i0.1642

Vanegas JM, Parra OL, Jiménez JN. Molecular epidemiology of carbapenem resistant gram-negative bacilli from infected pediatric population in tertiary - care hospitals in Medellín, Colombia: An increasing problem. BMC Infect Dis. 2016;16:463. https://doi.org/10.1186/s12879-016-1805-7

López JA, Correa A, Navon-Venezia S, Correa AL, Torres JA, Briceño DF, et al. Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clin Microbiol Infect. 2011;17:52-6. https://doi.org/10.1111/j.1469-0691.2010.03209.x

Rodríguez E, Saavedra Y, Leal A, Álvarez C, Olarte N, Valderrama A, et al. Diseminación de Klebsiella pneumoniae productoras de KPC-3 en hospitales de Bogotá durante un periodo de tres años. Biomédica. 2014;34(Supl.1):224-31. https://doi.org/10.7705/biomedica.v34i0.1696

Ocampo AM, Vargas CA, Sierra P, Cienfuegos AV, Jiménez J. Caracterización molecular de un brote de Klebsiella pneumoniae resistente a carbapenémicos en un hospital de alto nivel de complejidad de Medellín, Colombia. Biomédica. 2015;35:496-504. https://doi.org/10.7705/biomedica.v35i4.2610

Ovalle MV, Saavedra SY, González MN, Hidalgo AM, Duarte C, Beltrán M. Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014. Biomédica. 2017;37:473-85. https://doi.org/10.7705/biomedica.v37i4.3432

Ocampo AM, Chen L, Cienfuegos AV, Roncancio G, Chavda KD, Kreiswirth BN, et al. A two-year surveillance in five Colombian tertiary care hospitals reveals high frequency of non-CG258 clones of carbapenem-resistant Klebsiella pneumoniae with distinct clinical characteristics. Antimicrob Agents Chemother. 2016;60:332-42. https://doi.org/10.1128/AAC.01775-15

Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35:147-51. https://doi.org/10.1128/AAC.35.1.147

Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, et al. Molecular characterization of an enterobacterial metallo β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994;38:71-8. https://doi.org/10.1128/AAC.38.1.71

Lincopan N, McCulloch JA, Reinert C, Cassettari VC, Gales AC, Mamizuka EM. First isolation of metallo-β-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol. 2005;43:516-9. https://doi.org/10.1128/JCM.43.1.516-519.2005

Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43:1584-90. https://doi.org/10.1128/AAC.43.7.1584

Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: The quiet before the storm? Clin Microbiol Rev. 2005;18:306-25. https://doi.org/10.1128/CMR.18.2.306-325.2005

Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-betalactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004;42:5094-101. https://doi.org/10.1128/JCM.42.11.5094-5101.2004

Montealegre MC, Correa A, Briceño DF, Rosas NC, De La Cadena E, Ruiz SJ, et al. Novel VIM metallo-beta-lactamase variant, VIM-24, from a Klebsiella pneumoniae isolate from Colombia. Antimicrob Agents Chemother. 2011;55:2428-30. https://doi.org/10.1128/AAC.01208-10

Correa A, Montealegre MC, Mojica MF, Maya JJ, Rojas LJ, De La Cadena EP, et al. First report of a Pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrob Agents Chemother. 2012;56:5422-3. https://doi.org/10.1128/AAC.00695-12

Correa A, Del Campo R, Perenguez M, Blanco VM, Rodríguez-Baños M, Perez F, et al. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in Colombia. Antimicrob Agents Chemother. 2015;59:2421-5. https://doi.org/10.1128/AAC.03926-14

Vanegas JM, Cienfuegos AV, Ocampo AM, López L, del Corral H, Roncancio G, et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol. 2014;52:3978-86. https://doi.org/10.1128/JCM.01879-14

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046-54. https://doi.org/10.1128/AAC.00774-09

Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014;2014:249856. https://doi.org/10.1155/2014/249856

Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791-8. https://doi.org/10.3201/eid1710.110655

Pasteran F, Albornoz E, Faccone D, Gómez S, Valenzuela C, Morales M, et al. Emergence of NDM-1-producing Klebsiella pneumoniae in Guatemala. J Antimicrob Chemother. 2012;67:1795-7. https://doi.org/10.1093/jac/dks101

Escobar-Pérez JA, Olarte-Escobar NM, Castro-Cardozo B, Valderrama-Márquez IA, Garzón-Aguilar MI, Martínez-de la Barrera L, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 2013;57:1957-60. https://doi.org/10.1128/AAC.01447-1

Saavedra-Rojas SY, Duarte-Valderrama C, González-de Arias MN, Ovalle-Guerro MV. Emergence of Providencia rettgeri NDM-1 in two departments of Colombia, 2012-2013. Enferm Infecc Microbiol Clin. 2017;35:354-8. https://doi.org/10.1016/j.eimc.2015.05.011

Instituto Nacional de Salud. Circulación de carbapenemasas tipo Nueva Delhi metalobetalactamasa (NDM) en Colombia 2012-2014. Bogotá, D.C.: INS; 2014.

Correa C, Castro E, Salamanca D, Bustacara L, Lemos E. Escherichia coli productora de Nueva Delhi metalo-b-lactamasa en Colombia: reporte de caso. Infectio. 2016. https://doi.org/10.1016/j.infect.2016.05.002

Evans BA, Amyes SG. OXA β-Lactamases. Clin Microbiol Rev. 2014;27:241-63. https://doi.org/10.1128/CMR,00117-13

Paton R, Miles RS, Hood J, Amyes SG, Miles RS, Amyes SG. ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 1993;2:81-7. https://doi.org/10.1016/0924-8579(93)90045-7

Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother. 2000;44:196-9. https://doi.org/10.1128/AAC.44.1.196-199.2000

Brown S, Young HK, Amyes SG. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect. 2005;11:15-23. https://doi.org/10.1111/j.1469-0691.2004.01016.x

Pinzón JO, Mantilla JR, Valenzuela EM, Fernández F, Álvarez CA, Osorio E. Caracterización molecular de aislamientos de Acinetobacter baumannii provenientes de la unidad de quemados de un hospital de tercer nivel de Bogotá. Infectio. 2006;10:71-8.

Villegas MV, Kattan JN, Correa A, Lolans K, Guzmán AM, Woodford N, et al. Dissemination of Acinetobacter baumannii clones with OXA-23 carbapenemase in Colombian hospitals. Antimicrob Agents Chemother. 2007;51:2001-4. https://doi.org/10.1128/AAC.00226-07

Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258:72-7. https://doi.org/10.1111/j.1574-6968.2006.00195.x

Saavedra SY, Núñez JC, Pulido IY, González EN, Valenzuela EM, Reguero MT, et al. Characterisation of carbapenem-resistant Acinetobacter calcoaceticus--A. baumannii complex isolates in a third-level hospital in Bogotá, Colombia. Int J Antimicrob Agents. 2008;31:389-91. https://doi.org/10.1016/j.ijantimicag.2007.12.008

Martínez P, Máttar S. Imipenem-resistant Acinetobacter baumannii carrying the ISAba1-blaOXA-23,51 and ISAba1-bla ADC-7 genes in Monteria, Colombia. Braz J Microbiol. 2012;43:1274-80. https://doi.org/10.1590/S1517-83822012000400006

Hernández-Gómez C, Blanco VM, Motoa G, Correa A, Maya JJ, de la Cadena E, et al. Evolución de la resistencia antimicrobiana en bacilos Gram negativos en unidades de cuidados intensivos en Colombia. Biomédica. 2014;34(Supl.1):91-100. https://doi.org/10.7705/biomedica.v34i0.1667

Reguero MT, Medina OE, Hernández MA, Flórez DV, Valenzuela EM, Mantilla JR. Antibiotic resistance patterns of Acinetobacter calcoaceticus-A. baumannii complex species from Colombian hospitals. Enferm Infecc Microbiol Clin. 2013;31:142-6. https://doi.org/10.1016/j.eimc.2012.07.013

Montealegre MC, Maya JJ, Correa A, Espinal P, Mojica MF, Ruiz SJ, et al. First identification of OXA-72 carbapenemase from Acinetobacter pittii in Colombia. Antimicrob Agents Chemother. 2012;56:3996-8. https://doi.org/10.1128/AAC.05628-11

Saavedra SY, Cayô R, Gales AC, Leal AL, Saavedra CH. Early dissemination of OXA-72-producing Acinetobacter baumannii strain in Colombia: A case report. Braz J Infect Dis. 2014;18:678-80. https://doi.org/10.1016/j.bjid.2014.05.017

Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: The phantom menace. J Antimicrob Chemother. 2012;67:1597-606. https://doi.org/10.1093/jac/dks121

Vanegas JM, Ospina WP, Felipe Higuita-Gutiérrez L, Natalia Jiménez J. First reported case of an OXA-48-producing isolate from a Colombian patient. J Glob Antimicrob Resist. 2016;6:67-8. https://doi.org/10.1016/j.jgar.2016.04.001

Cómo citar
Rada, A. M., Hernández-Gómez, C., Restrepo, E., & Villegas, M. V. (2019). Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016. Biomédica, 39, 199-220. https://doi.org/10.7705/biomedica.v39i3.4351
Publicado
2019-05-01