Expresión de alfa sinucleína en sangre y su relación con el estreñimiento crónico en población residente en Bogotá, D.C. con problemas de consumo de alcohol

Tania Yadira Martínez-Rodríguez, Mauricio Rey-Buitrago, .

Palabras clave: Alfa-Sinucleína, alcoholismo, expresión génica, polimorfismo genético, inflamación, estreñimiento.

Resumen

Introducción. El consumo excesivo de alcohol resulta en neuroadaptación, neurodegeneración y expresión diferencial de numerosos genes.
Objetivo. Determinar la relación entre la expresión del gen de la alfa sinucleina en sangre, polimorfismos de nucleótido simple (actualmente SNV´s) en su región promotora y el estreñimiento crónico en personas con problemas de consumo de alcohol.
Materiales y métodos. La muestra estuvo conformada por 35 controles y 27 casos, seleccionados de acuerdo al puntaje obtenido con la herramienta AUDIT. Para el diagnóstico de estreñimiento se aplicaron los criterios Roma IV. Se realizó extracción de ácidos nucleicos a partir de sangre periférica y se evaluó la expresión del gen mediante qPCR, cuantificación proteica por ELISA y la presencia de SNV´s en la región promotora del gen por secuenciación Sanger.
Resultados. Se observó sobreexpresión génica relativa de ARNm de SNCA en el grupo de casos, lo cual no se relacionó con estreñimiento crónico. Se evidenció un riesgo 4,8 veces mayor de presentar estreñimiento en el grupo de casos. Se encontraron 9 polimorfismos de nucleótido simple en un segmento de la región promotora del gen rica en secuencias reguladoras CpG, con frecuencia similar entre los grupos y se identificó un polimorfismo en la posición -2171, que no se encuentra reportado en GenBank para variantes clínicas y cuyo genotipo A/T se relacionó con incremento en la expresión de ARNm de SNCA.
Conclusión. En personas con problemas de consumo de alcohol, se evidenció sobreexpresión de ARNm de alfa sinucleina, lo cual no estuvo relacionado con el diagnóstico de estreñimiento crónico.

Descargas

La descarga de datos todavía no está disponible.
  • Tania Yadira Martínez-Rodríguez Maestría en Fisiología, Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia https://orcid.org/0000-0002-0456-3471
  • Mauricio Rey-Buitrago Maestría en Genética Humana, Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia https://orcid.org/0000-0001-7820-0799

Referencias

OMS. Estrategia mundial para reducir el uso nocivo del alcohol. OMS - 63a Assem Geral Mund Saúde [Internet]. 2010;1–46. Available from: www.who.org

Gomez, Alfonso M de J y derecho, Ruiz Gomez F, Bo Mathiasen R de la O de las NU contrla la droga y el D. Estudio De Consumo De Sustancias Psicoactivas En Colombia 2013. 2013;9:175.

Serecigni JG. Neurobiología del alcoholismo. 2013.

Janeczek P, Lewohl JM. The role of a-synuclein in the pathophysiology of alcoholism. Neurochem Int [Internet]. 2013;63(3):154–62. Available from: http://dx.doi.org/10.1016/j.neuint.2013.06.007

Swant J, Goodwin JS, North A, Ali AA, Gamble-George J, Chirwa S, et al. a-Synuclein Stimulates a Dopamine Transporter-Dependent Chloride Current and Modulates the Activity of the Transporter. J Biol Chem. 2011;286(51):43933–43.

Liang T, Carr LG. Regulation of alpha-synuclein expression in alcohol-preferring and -non preferring rats. J Neurochem. 2006;99(2):470–82.

Butler B, Saha K, Rana T, Becker JP, Sambo D, Davari P, et al. Dopamine transporter activity is modulated by a-synuclein. J Biol Chem. 2015;290(49):29542–54.

Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides [Internet]. 2014;62:197–202. Available from: http://dx.doi.org/10.1016/j.peptides.2014.09.018

Lööv C, Scherzer CR, Hyman BT, Breakefield XO, Ingelsson M. α-Synuclein in Extracellular Vesicles: Functional Implications and Diagnostic Opportunities. Cell Mol Neurobiol. 2016;36(3):437–48.

Simonsen AH, Kuiperij B, El-Agnaf OMA, Engelborghs S, Herukka S-K, Parnetti L, et al. The utility of α-synuclein as biofluid marker in neurodegenerative diseases: a systematic review of the literature. Biomark Med [Internet]. 2016;10(1):19–34. Available from: http://www.futuremedicine.com/doi/10.2217/BMM.14.105

El-Agnaf OMA. Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J [Internet]. 2003;1945–7. Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.03-0098fje

Henchcliffe C. Blood and cerebrospinal fluid markers in Parkinson ’ s disease : current biomarker findings. Curr Biomark Find [Internet]. 2015;5:1–11. Available from: http://www.dovepress.com/blood-and-cerebrospinal-fluid-markers-in-parkinson39s-disease-current--peer-reviewed-article-CBF

Nakai M, Fujita M, Waragai M, Sugama S, Wei J, Akatsu H, et al. Expression of a-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem Biophys Res Commun. 2007;358(1):104–10.

Abd-Elhadi S, Honig A, Simhi-Haham D, Schechter M, Linetsky E, Ben-Hur T, et al. Total and Proteinase K-Resistant α-Synuclein Levels in Erythrocytes, Determined by their Ability to Bind Phospholipids, Associate with Parkinson’s Disease. Sci Rep [Internet]. 2015;5(January):11120. Available from: http://www.nature.com/articles/srep11120

Kang W, Chen W, Yang Q, Zhang L, Zhang L, Wang X, et al. Salivary total α-synuclein, oligomeric α-synuclein and SNCA variants in Parkinson’s disease patients. Sci Rep [Internet]. 2016;6(March):28143. Available from: http://www.nature.com/articles/srep28143

Wang X, Yu S, Li F, Feng T. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci Lett [Internet]. 2015;599:115–9. Available from: http://dx.doi.org/10.1016/j.neulet.2015.05.030

Bonsch D, Reulbach U, Bayerlein K, Hillemacher T, Kornhuber J, Bleich S. Elevated alpha synuclein mRNA levels are associated with craving in patients with alcoholism. Biol Psychiatry. 2004;56(12):984–6.

Ziolkowska B, Gieryk A, Wawrzczak-Bargiela A, Krowka T, Kaminska D, Korkosz A, et al. a-Synuclein expression in the brain and blood during abstinence from chronic alcohol drinking in mice. Neuropharmacology. 2008;54(8):1239–46.

Walker SJ, Grant KA. Peripheral blood α-synuclein mRNA levels are elevated in cynomolgus monkeys that chronically self-administer ethanol. Alcohol. 2006;38(1):1–4.

Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110(5):517–36.

Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s Disease? Evidence from 3 cases. Mov Disord. 2012;27(6):716–9.

Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR. A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) Mice. Neurotherapeutics. 2012;9(2):297–314.

Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, et al. Differential neuropathological alterations in transgenic mice expressing a-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res. 2002;68(5):568–78.

Verbaan D, Marinus J, Visser M, Van Rooden SM, Stiggelbout AM, Van Hilten JJ. Patient-reported autonomic symptoms in Parkinson disease. Neurology. 2007;69(4):333–41.

Wang L, Magen I, Yuan PQ, Subramaniam SR, Richter F, Chesselet MF, et al. Mice overexpressing wild-type human alpha-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol Motil. 2012;24(9):1–12.

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167(6):1469–1480.e12.

Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res [Internet]. 2015;37(2):223–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26695747%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4590619

Yan AW, Fouts DE, Brandl J, St??rkel P, Torralba M, Schott E, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53(1):96–105.

Babor TF, Higgins-biddle JC, Saunders JB, Monteiro MG. Cuestionario de Identificación de los Transtornos debidos al Consumo de Alcohol. Organ Mund la Salud [Internet]. 2001;6:1–40. Available from: http://www.who.int/substance_abuse/activities/en/AUDITmanualSpanish.pdf

Campo A, Villamil M, Herazo E. Confiabilidad y dimensionalidad del AUDIT en estudiantes de medicina. Rev del programa Psicol la Univ del Norte [Internet]. 2013;30. Available from: http://rcientificas.uninorte.edu.co/index.php/psicologia/article/view/4377/6769

Ospina-Díaz JM, Abril FGM, Riaño NEA. Confiabilidad y dimensionalidad del cuestionario para identificación de trastornos debidos al consumo de alcohol (audit) en estudiantes universitarios de tunja (Colombia). Salud Uninorte. 2012;28(2):276–82.

Anderson P, Gual L, J. C. Alcohol y atención primaria de la salud Alcohol y atención primaria de la salud. Organ Panam La Salud. 2008;274(1):3–148.

Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 2004;37(1):112–9.

Aerts JL, Gonzales MI, Topalian SL. Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques. 2004;36(1):84–91.

Kaphingst KA, Persky S, Lachance C. Differential expression of 14-3-3 isoforms in human alcoholic brain. 2010;14(4):384–99.

Ho AMC, MacKay RK, Dodd PR, Lewohl JM. Association of polymorphisms in RGS4 and expression of RGS transcripts in the brains of human alcoholics. Brain Res. 2010;1340:1–9.

Janeczek P. Mechanisms of Gene Regulation in Alcoholism : Role of α -Synuclein in the Pathophysiology of Alcohol Misuse. 2016.

Bönsch D, Greifenberg V, Bayerlein K, Biermann T, Reulbach U, Hillemacher T, et al. α-Synuclein protein levels are increased in alcoholic patients and are linked to craving. Alcohol Clin Exp Res. 2005;29(5):763–5.

Ding J, Zhang J, Wang X, Zhang L, Jiang S, Yuan Y, et al. Relationship between the plasma levels of neurodegenerative proteins and motor subtypes of Parkinson’s disease. J Neural Transm. 2017;124(3):353–60.

Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science (80- ). 2003;300(5620):805–8.

Parker R, Sheth U. P Bodies and the Control of mRNA Translation and Degradation. Mol Cell. 2007;25(5):635–46.

Doxakis E. Post-transcriptional regulation of a-synuclein expression by mir-7 and mir-153. J Biol Chem. 2010;285(17):12726–34.

McMillan KJ, Murray TK, Bengoa-Vergniory N, Cordero-Llana O, Cooper J, Buckley A, et al. Loss of MicroRNA-7 Regulation Leads to α-Synuclein Accumulation and Dopaminergic Neuronal Loss In Vivo. Mol Ther [Internet]. 2017;25(10):2404–14. Available from: http://dx.doi.org/10.1016/j.ymthe.2017.08.017

Foroud T, Wetherill LF, Liang T, Dick DM, Hesselbrock V, Kramer J, et al. Association of alcohol craving with a-synuclein (SNCA). Alcohol Clin Exp Res. 2007;31(4):537–45.

Bönsch D, Lederer T, Reulbach U, Hothorn T, Kornhuber J, Bleich S. Joint analysis of the NACP-REP1 marker within the alpha synuclein gene concludes association with alcohol dependence. Hum Mol Genet. 2005;14(7):967–71.

Janeczek P, MacKay RK, Lea RA, Dodd PR, Lewohl JM. Reduced expression of a-synuclein in alcoholic brain: Influence of SNCA-Rep1 genotype. Addict Biol. 2014;19(3):509–15.

Sharma A, Kurek J, Morgan JC, Wakade C, Rao SSC. Constipation in Parkinson’s Disease: a Nuisance or Nuanced Answer to the Pathophysiological Puzzle? Curr Gastroenterol Rep. 2018;20(1):1–9.

Tsuruya A, Kuwahara A, Saito Y, Yamaguchi H, Tsubo T, Suga S, et al. Ecophysiological consequences of alcoholism on human gut microbiota: Implications for ethanol-related pathogenesis of colon cancer. Sci Rep [Internet]. 2016;6(June):1–12. Available from: http://dx.doi.org/10.1038/srep27923

Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Stärkel P, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci [Internet]. 2014;111(42):E4485–93. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1415174111

Lin CH, Lin JW, Liu YC, Chang CH, Wu RM. Risk of Parkinson’s disease following severe constipation: A nationwide population-based cohort study. Park Relat Disord [Internet]. 2014;20(12):1371–5. Available from: http://dx.doi.org/10.1016/j.parkreldis.2014.09.026

Wang L, Fleming SM, Chesselet M-F, Taché Y. Abnormal colonic motility in mice overexpressing human wild-type α-synuclein. Neuroreport [Internet]. 2008;19(8):873–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3108489&tool=pmcentrez&rendertype=abstract

Kuo, Y; Li, Z; Jiao, Y; Gaborit, N; Pani, A; Morrison, B; Bruneau, B; Giasson, B; Smeyne, R; Gershon, M; Nussbaum R. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum Mol Genet [Internet]. 2010;19(9):1633–50. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850613/

Cómo citar
Martínez-Rodríguez, T. Y., & Rey-Buitrago, M. (2019). Expresión de alfa sinucleína en sangre y su relación con el estreñimiento crónico en población residente en Bogotá, D.C. con problemas de consumo de alcohol. Biomédica, 40(2). https://doi.org/10.7705/biomedica.4771
Publicado
2019-09-13
Sección
Artículos originales