Clinical manifestations of lead levels in children exposed to automobile battery recycling processes in Soacha and Bogotá, D.C.

Jairo Echeverry, Carlos Mauricio Hurtado, Myriam Gutiérrez, .

Keywords: Lead poisoning/epidemiology, occupational exposure, hazardous waste use, batteries, child, infant, Colombia

Abstract

Introduction. Lead is a harmless metal if not handled directly in the industrial process. Even though lead has been eliminated from the gasoline in many countries, automobile battery recycling continues to be a potential source of exposure and intoxication for the workers and their families, particularly of low income.  The current investigation was initiated after an index case of lead poisoning was reported from Soacha, Cundinamarca, in central Colombia..
Objective. Clinical investigation established lead levels and lead poison frequency in children with para-occupational lead exposure in the process of recycling automobile batteries.
Material and methods. This was designed as a descriptive study, with selection of subjects with high risk of possible lead exposure. Minors, mostly of school age were recruited based on referral by relatives, neighbors or acquaintances, all of whom were involved in para-occupational exposure. Thirty two children, less than 12 years old (majority school age), were included. General and specific examinations of the children were made, and blood samples were taken for lead and hematological determinations.
Results. All subjects showed high levels of lead (2-9 times the maximum acceptable value) and, according to established criteria, two-thirds were rated as severely poisoned. The children with high levels of lead had tendency toward more specific hematological compromise and showing black gingival bordering (Burton border).
Conclusion. This study communicates to the sanitary authorities and government a clear sign of alarm in that measures must be taken to diminish the occupational or para-occupational lead exposure of children by way of the automobile battery recycling industry.

Downloads

Download data is not yet available.
  • Jairo Echeverry Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
  • Carlos Mauricio Hurtado Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
  • Myriam Gutiérrez Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia

References

1. Patterson CC, Ericson J, Manea-Krichten M, Shirahata H. Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ. 1991;107:205-36.
2. American Academy of Pediatrics Committee on Environmental Health. Policy Statement. Lead exposure in children: Prevention, detection, and management. Pediatrics. 2005;116:1036-46.
3. Pirkle JL, Brody DJ, Gunter EW, Kramer RA, Paschal DC, Flegal KM, et al. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Survey. JAMA. 1994;272:284-91.
4. Ministerio del Medio Ambiente, Ministerio de Minas y Energía. Artículo 40 del Decreto 948 de 1995. Bogotá D.C.: Ministerio del Medio Ambiente, Ministerio de Minas y Energía: 1995.
5. Organización de los Estados Americanos. Primera Cumbre de las Américas. Miami, Florida, 9 al 11 de diciembre de 1994. Plan de Acción. IV. La Garantía del Desarrollo Sostenible y la Conservación de Nuestro Medio Ambiente para las Generaciones Futuras. Consultado: 10 de enero de 2007. Disponible en: http://summit-americas.org/miamiplan-spanish.htm#23
6. Montoya M. Intoxicaciones pediátricas. Programa de Actualización Continua en Pediatría PAC. Primera Edición. Ciudad de México: Intersistemas SA; 1996.
7. Ministerio de Trabajo y Seguridad Social. Enfermedades profesionales, protocolos para su diagnóstico. Sociedad Colombiana de Medicina del Trabajo. Bogotá D.C: Ministerio de Trabajo y Seguridad Social; 1997. p.151-80, 218-9.
8. Córdoba, D. Toxicología. Cuarta edición. Bogotá: Manual Moderno; 2001.p.276-90.
9. Cárdenas O, Varona ME, Núñez SM, Ortiz JE, Peña GE. Correlación de protoporfirina zinc y plomo en sangre en trabajadores de fábricas de baterías, Bogotá, Colombia. Salud Pública Mex. 2001;43:203-10.
10. American Academy of Pediatrics Committee on Environmental Health. Lead poisoning: from screening to primary prevention. Pediatrics. 1993;92:176-83.
11. Bellinger D. Lead. Pediatrics. 2005;113:1016-22.
12. Needleman HL. Preventing childhood lead poisoning. Prev Med. 1994;23:634-7.
13. Lanphear BP, Matte TD, Rogers J, Clickner RP, Dietz B, Bornschein RL, et al. The contribution of lead-contaminated house dust and residential soil to childrens blood lead levels: A pooled analysis of 12 epidemiologic studies. Environ Res. 1998;79:51-68.
14. Sanín LH, González T, Romieu I, Hernández M. Acumulación de plomo en hueso y sus efectos en la salud. Salud Publica Mex. 1998;40:359-68.
15. Centers for Disease Control. Preventing lead poisoning in young children. Atlanta: US. Department of Health and Human Services; 1991.
16. Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit 2005;11:RA329-36.
17. Tellez-Rojo MM, Bellinger DC, Arroyo-Quiroz C, Lamadrid-Figueroa H, Mercado-Garcia A, Schnaas-Arrieta L, et al. Longitudinal associations between blood lead concentrations lower than µ10 g/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics. 2006;118;323-30.
18. Rogan WJ, Wate JH. Exposure to lead in children-How low is low enough?. N Engl J Med. 2003;348:1515-6.
19. Rosen J, Mushek P. Primary prevention of childhood lead poisoning-the only solution. N Engl J Med. 2001;344:1470-1.
20. American Academy Of Pediatrics. Screening for elevated blood lead levels. Pediatrics. 1998:101;1072-8.
21. Martínez O, López M. Prevalencia de alteraciones hematológicas en intoxicación ocupacional por plomo. Acta Médica Colombiana 1997;22:133-9.
22. Curtis K, Watkins J. Manual de toxicología. Sexta Edición. México D.F: Mc Graw-Hill; 2001.p.811-34.
23. Grigg J. Environmental toxins; their impact on childrens health. Arch Dis Chile. 2004;89:244-50.
24. Lin JL, Lin-Tan DT, Hsu KH, Yu CC. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N Engl J Med. 2003;348:277-86.
25. Marsden PA. Increased body lead burden-cause or consequence of chronic renal insufficiency? N Engl J Med. 2003;348:345-7.
26. Martínez O. Relación dosis efecto subcrítico del plomo en el sistema hematopoyético. Acta Médica Colombiana. 1999;24:56-9.
27. Brent J, Wallece K, Burkhart K, Phillips S, Donovan JW. Critical care toxicology: Diagnosis and management of the critically poisoned patient. First edition. Philadelphia: Elsevier Mosby; 2005. p.821-36.
28. Erickson T, Ahrens W, Aks S, Baum C, Ling L. Pediatric toxicology Diagnosis & management of the poisoned child. First edition. New York: McGraw-Hill; 2005. p.461-7.
29. Sanborn MD, Abelsohn A, Campbell M, Weir E. Identifying and managing adverse environmental health effect: 3. Lead exposure. CMAJ. 2002;166:1287-92.
30. Olson K, Anderson I, Benowitz N, Blanc P, Clarck R, Kearney T. Poisoning & drug overdose. Cuarta Edición. New York: Mc Graw Hill; 2004. p.238-42, 413-5, 440-2,484-5, 501-3.
31. National Centre of Health Statistics. MCHS growth curves for children 0-18 years. United States, vital and health statistics. Series 11, No.165. Washington D.C.: Health Resources Administration, US Government Printing Office; 1977.
32. Agudelo GM, Cardona OL, Posada M, Montoya MN, Ocampo NE, Marín CM, et al. Prevalence of iron-deficiency anemia in schoolchildren and adolescent, Medellin, Colombia, 1999. Rev Panam Salud Pública. 2003;13:376-86.
33. Poldesky E, Ortiz J, Villamil G. Determinación de trazas de metales en muestras biológicas y ambientales. Manual de procedimientos. Santa Fe de Bogotá: Instituto Nacional de Salud; 1992. p.39-42.
34. StataCorp. STATA Statistical Software. Release 8. College Station, TX: StataCorp LP; 2003
35. Bradman A, Eskenazi B, Sutton P, Athanasoulis M, Goldman LR. Iron deficiency associated with higher blood lead in children living in contaminated environments. Environ Health Perspect. 2001; 109:1079-84.
36. Choi S, Kim SK. Association between blood lead concentrations and body iron status in children. Arch Dis Child. 2003;88:791-2.
37. Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis. Sci Total Environ. 2004;330:21-37.
38. Pocock SJ, Smith M, Baghurst P. Enviromental lead and children´s intelligence: a systematic review of the epidemiological evidence. BMJ. 1994;309:1189-97.
39. Zawia N. Molecular Neurotoxicology. First edition. Boca Ratón: CRC Press; 2004. p.183-95.
40. Lidsky TI, Schneider JS. Lead neurotoxicity in children: Basic mechanism and clinical correlates. Brain. 2003;126:5-19
41. Bressler J, Kim KA, Chakrfaborti T, Goldstein G. Molecular mechanisms of lead neurotoxicity. Neurochem Res. 1999;24:595-600.
42. Bressler JP, Goldstein GW. Mechanisms of lead neurotoxicity. Biochem Pharmacol. 1999;41:479-84.
43. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations bellow 10µg/dl. N Engl J Med. 2003;348:1517-26.
44. Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganik M, Radcliffe J, et al. The efect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med. 2001;344:1421-6. 
How to Cite
1.
Echeverry J, Hurtado CM, Gutiérrez M. Clinical manifestations of lead levels in children exposed to automobile battery recycling processes in Soacha and Bogotá, D.C. biomedica [Internet]. 2008 Mar. 1 [cited 2024 May 18];28(1):116-25. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/114

Some similar items:

Published
2008-03-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code