Analysis of SOD1 and C9orf72 mutations in patients with amyotrophic lateral sclerosis in Antioquia, Colombia

Jimena Jaramillo, Juan M. Solano, Alejandra Aristizábal, Juliana Martínez , .

Keywords: amyotrophic lateral sclerosis/genetics, neurodegenerative disease, genes, mutations

Abstract

Introduction: Amyotrophic lateral sclerosis is a neurodegenerative disease with a possible multifactorial origin characterized by the progressive degeneration of motor neurons. There is a relatively high prevalence of this disease in Antioquia; however, there is no published genetic study to date in Colombia. Despite its unknown etiopathogenesis, more genetic risk factors possibly involved in the development of this disease are constantly found.
Objetives: To evaluate G93A and D90A mutations in SOD1 gene and a short tandem repeat in C9orf72 within a cohort of amyotrophic lateral sclerosis patients from Antioquia, Colombia.
Materials y methods: Thirty-four patients previously diagnosed with amyotrophic lateral sclerosis were included in the study. Peripheral blood samples were used for DNA extraction and genotyping.
Results: No mutations were found in SOD1 (G93A and D90A) in any of the patients, while C9orf72 exhibited an allele with a statistically significant high prevalence in the study sample (8 hexanucleotide repeats of CAGCAG).
Conclusions: These results suggest an association between this short tandem repeat (STR) in C9orf72 and the presence of amyotrophic lateral sclerosis in the studied population. However, this association should be established in a larger sample size and with controls from the same population. In addition, there also seems to be a genetic anticipation effect for the disease regarding this locus, since patients with this genotype present an earlier onset.

Downloads

Download data is not yet available.

References

Yamashita S, Ando Y. Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener. 2015;4:13. https://doi.org/10.1186/s40035-015-0036-y

Turner MR, Verstraete E. What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Curr Neurol Neurosci Rep. 2015;15:45. https://doi.org/10.1007/s11910-015-0569-6

Hamosh A. Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders. Nucleic Acids Res. 2004;33:D514-7. https://doi.org/10.1093/nar/gki033

Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat Genet. 2008;40:124-5. https://doi.org/10.1038/ng0208-124

Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14:291-301. https://doi.org/10.1016/S1474-4422(14)70233-9

Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 2009;4:3. https://doi.org/10.1186/1750-1172-4-3

Ajroud-Driss S, Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). BBA -Mol Basis of Dis. 2015;1852:679-84. https://doi.org/10.1016/j.bbadis.2014.08.010

De Jong SW, Huisman MHB, Sutedja NA, van der Kooi AJ, de Visser M, Schelhaas HJ, et al. Smoking, alcohol consumption, and the risk of amyotrophic lateral sclerosis: A populationbased study. Am J Epidemiol. 2012;176:233-9. https://doi.org/ 10.1093/aje/kws015

Saez-Atienzar S, Bandres-Ciga S, Langston RG, Kim JJ, Choi SW, Reynolds RH, et al. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci Adv. 2021;7:eabd9036. https://doi.org/10.1126/sciadv.abd9036

Özoğuz A, Uyan Ö, Birdal G, Iskender C, Kartal E, Lahut S, et al. The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging. 2015;36:1764.e9-1764.e18. https://doi.org/10.1016/j.neurobiolaging.2014.12.032

Bertolin C, D’Ascenzo C, Querin G, Gaiani A, Boaretto F, Salvoro C, et al. Improving the knowledge of amyotrophic lateral sclerosis genetics: Novel SOD1 and FUS variants. Neurob Aging. 2014;35:1212. http://doi.org/10.1016/j.neurobiolaging.2013.10.093

Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: A population-based cohort study. Lancet Neurol. 2012;11:232-40. https://doi.org/10.1016/S1474-4422(12)70014-5

Ugolino J, Ji YJ, Conchina K, Chu J, Nirujogi RS, Pandey A, et al. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLOS Genet. 2016;12:e1006443. https://doi.org/10.1371/journal.pgen.1006443

Isobe T, Tooi N, Nakatsuji N, Aiba K. Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses. Stem Cell Res. 2015;15:459-68. https://doi.org/10.1016/j.scr.2015.09.006

Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol. 2015;133:1-26. https://doi.org/10.1016/j.pneurobio.2015.07.004

Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9orf72 is the cause of chromosome 9p21-Linked ALSFTD. Neuron. 2011;72:257-68. https://doi.org/10.1016/j.neuron.2011.09.010

Ng ASL, Tan EK. Intermediate C9orf72 alleles in neurological disorders: Does size really matter? J Med Genet. 2017;54:591-7. https://doi.org/10.1136/jmedgenet-2017-104752

Ospina ML, Prieto FE, Pachecho O, Quijano H, Lozano N, Gomez S, et al. Boletín epidemiológico semana 5. 2019. Fecha de consulta: 4 de febrero de 2021. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%205.pdf

Zapata-Zapata C, Franco-Dáger E, Solano-Atehortúa J, Ahunca-Velásquez L. Esclerosis lateral amiotrófica: actualización. IATREIA. 2016;29:194-205. https://doi.org/10.17533/udea.iatreia.v29n2a08

Zapata-Zapata CH, Dáger EF, Aguirre-Acevedo DC, de Carvalho M, Solano-Atehortua J. Prevalence, incidence, and clinical-epidemiological characterization of amyotrophic lateral sclerosis in Antioquia: Colombia. Neuroepidemiology. 2020;54:251-8. https://doi.org/ 10.1159/000504549

Nikali K, Vanegas JJ, Burley MW, Martínez J, López LM, Bedoya G, et al. Extensive founder effect for distal renal tubular acidosis (dRTA) with sensorineural deafness in an isolated South American population. Am J Med Genet. 2008;146A:2709-12. https://doi.org/ 10.1002/ajmg.a.32495

Carvajal-Carmona LG, Soto ID, Pineda N, Ortiz-Barrientos D, Duque C, Ospina-Duque J, et al. Strong amerind/white sex bias and a possible sephardic contribution among the founders of a population in Northwest Colombia. Am J Hum Genet. 2000;67:1287-95. https://doi.org/10.1016/s0002-9297(07)62956-5

Arcos-Burgos M, Muenke M. Genetics of population isolates. Clin Genet. 2002;61:233-47. https://doi.org/ 10.1034/j.1399-0004.2002.610401.x

De Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol. 2008;119:497-503. https://doi.org/ 10.1016/j.clinph.2007.09.143

DeJesús-Hernández M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9orf72 causes chromosome 9p-Linked FTD and ALS. Neuron. 2011;72:245-56. https://doi.org/10.1016/j.neuron.2011.09.011

Martín Andrés A. Entry Fisher’s exact and Barnard’s tests. In: Kotz S, Johnson NL, Read CB, editors. Encyclopedia of Statistical Sciences. New York, NY: Wiley-Interscience; 1998. p. 250-8. https://doi.org/10.1002/0471667196.ess0642.pub2

Rousset F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8:103-6. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Raymond M, Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248-9. https://doi.org/10.1093/oxfordjournals.jhered.a111573

Couthouis J, Raphael AR, Daneshjou R, Gitler AD. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet. 2014;10:e1004704. https://doi.org/10.1371/journal.pgen.1004704

Marin B, Boumédiene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int J Epidemiol. 2017;46:57-74. https://doi.org/10.1093/ije/dyw061

Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler. 2009;10:310-23. https://doi.org/10.3109/17482960802566824

Logroscino G, Piccininni M. Amyotrophic lateral sclerosis descriptive epidemiology: The Origin of geographic difference. Neuroepidemiology. 2019;52:93-103. https://doi.org/10.1159/000493386

Carvajal-Carmona LG, Ophoff R, Service S, Hartiala J, Molina J, León P, et al. Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica. Hum Genet. 2003;112:534-41. https://doi.org/10.1007/s00439-002-0899-8

Chiurazzi P, Oostra BA. Expanding Mutations/Genetic Anticipation. Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd.; 2006. https://doi.org/10.1038/npg.els.0001463

Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: Seeking therapeutic targets in the era of gene therapy. J Hum Genet. 2022. https://doi.org/10.1038/s10038-022-01055-8

Byrne S, Heverin M, Elamin M, Walsh C, Hardiman O. Intermediate repeat expansion length in C9orf72 may be pathological in amyotrophic lateral sclerosis. Amyotrop Lateral Scler Frontotemporal Degener. 2014;15:148-50. https://doi.org/10.3109/21678421.2013.838586

Yang Q, Jiao B, Shen L. The development of C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia disorders. Front Genet. 2020. https://doi.org/10.3389/fgene.2020.562758

Mitteroecker P, Cheverud JM, Pavlicev M. Multivariate analysis of genotype–phenotype association. Genet. 2016;202:1345-63. https://doi.org/10.1534/genetics.115.181339

Namipashaki A, Razaghi-Moghadam Z, Ansari-Pour N. The essentiality of reporting hardyweinberg equilibrium calculations in population-based genetic association studies. Cell J. 2015;17:187-92. https://doi.org/10.22074/cellj.2016.3711

Hedrick PW. Genetics of populations. 4th edition. Sudbury, MA: Jones and Bartlett Publishers; 2011. p. 65-109.

Nakamura R, Misawa K, Tohnai G, Nakatochi M, Furuhashi S, Atsuta N, et al. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Commun Biol. 2020;3:526. https://doi.org/10.1038/s42003-020-01251-2

Mesaros M, Lenz S, Lim W, Brown J, Drury L, Roggenbuck J. Investigating the genetic profile of the amyotrophic lateral sclerosis/frontotemporal dementia (ALS-FTD) continuum in patients of diverse race, ethnicity and ancestry. Genes (Basel). 2021;13:76. https://doi.org/10.3390/genes13010076

Štětkářová I, Ehler E. Diagnostics of amyotrophic lateral sclerosis: Up to date. Diagnostics (Basel). 2021;11:231. https://doi.org/10.3390/diagnostics11020231

Huang F, Zhu Y, Hsiao-Nakamoto J, Tang X, Dugas JC, Moscovitch-Lopatin M, et al. Longitudinal biomarkers in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2020;7:1103-16. https://doi.org/10.1002/acn3.51078

Álvarez-Fernández A, Bernal MJ, Fradejas I, Martín Ramírez A, Md Yusuf NA, Lanza M, et al. KASP: A genotyping method to rapid identification of resistance in Plasmodium falciparum. Malar J. 2021;20:16. https://doi.org/10.1186/s12936-020-03544-7

How to Cite
1.
Jaramillo J, Solano JM, Aristizábal A, Martínez J. Analysis of SOD1 and C9orf72 mutations in patients with amyotrophic lateral sclerosis in Antioquia, Colombia. biomedica [Internet]. 2022 Dec. 1 [cited 2024 May 16];42(4):623-32. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6060

Some similar items:

Published
2022-12-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code